HOME
*



picture info

Max Planck Institute For Mathematics In The Sciences
The Max Planck Institute for Mathematics in the Sciences (MPI MiS) in Leipzig is a research institute of the Max Planck Society. Founded on March 1, 1996, the institute works on projects which apply mathematics in various areas of natural sciences, in particular physics, biology, chemistry and material science. Research groups * Nonlinear algebra (Bernd Sturmfels), *Pattern formation, energy landscapes and scaling laws ( Felix Otto), * Riemannian, Kählerian and algebraic geometry, and neuronal networks (Jürgen Jost), *Information Theory of Cognitive Systems (Nihat Ay) *Stochastic partial differential equations (Benjamin Gess) *Mathematical Software (Michael Joswig) *Combinatorial Algebraic Geometry (Mateusz Michałek) *Deep Learning Theory (Guido Montúfar) *Rigidity and Flexibility in PDEs (Angkana Rüland) *Structure of Evolution (Matteo Smerlak) *Tensors and Optimization (André Uschmajew) * The institute has an extensive visitors programme which has made Leipzig a main ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pattern Formation
The science of pattern formation deals with the visible, ( statistically) orderly outcomes of self-organization and the common principles behind similar patterns in nature. In developmental biology, pattern formation refers to the generation of complex organizations of cell fates in space and time. The role of genes in pattern formation is an aspect of morphogenesis, the creation of diverse anatomies from similar genes, now being explored in the science of evolutionary developmental biology or evo-devo. The mechanisms involved are well seen in the anterior-posterior patterning of embryos from the model organism ''Drosophila melanogaster'' (a fruit fly), one of the first organisms to have its morphogenesis studied, and in the eyespots of butterflies, whose development is a variant of the standard (fruit fly) mechanism. Patterns in nature Examples of pattern formation can be found in biology, physics, and science, and can readily be simulated with computer graphics, as desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Applied Mathematics
Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models. In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics where abstract concepts are studied for their own sake. The activity of applied mathematics is thus intimately connected with research in pure mathematics. History Historically, applied mathematics consisted principally of applied analysis, most notably differential equations; approximation theory (broadly construed, to include representations, asymptotic methods, variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jürgen Jost
Jürgen Jost (born 9 June 1956) is a German mathematician specializing in geometry. He has been a director of the Max Planck Institute for Mathematics in the Sciences in Leipzig since 1996. Life and work In 1975, he began studying mathematics, physics, economics and philosophy. In 1980 he received a Dr. rer. nat. from the University of Bonn under the supervision of Stefan Hildebrandt. In 1984 he was at the University of Bonn for the habilitation. After his habilitation, he was at the Ruhr University Bochum, the chair of Mathematics X, Analysis. During this time he was the coordinator of the project "Stochastic Analysis and systems with infinitely many degrees of freedom" July 1987 to December 1996. For this work he received the 1993 Gottfried Wilhelm Leibniz Prize, awarded by the Deutsche Forschungsgemeinschaft. Since 1996, he has been director and scientific member at the Max Planck Institute for Mathematics in the Sciences in Leipzig. After more than 10 years of work in Boc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neuronal Network
A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Neural circuits interconnect to one another to form large scale brain networks. Biological neural networks have inspired the design of artificial neural networks, but artificial neural networks are usually not strict copies of their biological counterparts. Early study Early treatments of neural networks can be found in Herbert Spencer's ''Principles of Psychology'', 3rd edition (1872), Theodor Meynert's ''Psychiatry'' (1884), William James' ''Principles of Psychology'' (1890), and Sigmund Freud's Project for a Scientific Psychology (composed 1895). The first rule of neuronal learning was described by Hebb in 1949, in the Hebbian theory. Thus, Hebbian pairing of pre-synaptic and post-synaptic activity can substantially alter the dynamic characteristics of the synaptic connection and therefore either facilitate or inhibit signal transmission. In 1959, the neu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "''Ueber die Hypothesen, welche der Geometrie zu Grunde liegen''" ("On the Hypotheses on which Geometry is Based.") It is a very broad and abstract generalization of the differential geometry of surfaces in R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher dimensio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Felix Otto (mathematician)
Felix Otto (born 19 May 1966) is a German mathematician. Biography He studied mathematics at the University of Bonn, finishing his PhD thesis in 1993 under the supervision of Stephan Luckhaus. After postdoctoral studies at the Courant Institute of Mathematical Sciences of New York University and at Carnegie Mellon University, in 1997 he became a professor at the University of California, Santa Barbara. From 1999 to 2010 he was professor for applied mathematics at the University of Bonn, and currently serves as one of the directors of the Max Planck Institute for Mathematics in the Sciences, Leipzig. Honours In 2006, he received the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft, which is the highest honour awarded in German research. In 2009, he was awarded a Gauss Lecture by the German Mathematical Society. In 2008 he became a member of the German Academy of Sciences Leopoldina The German National Academy of Sciences Leopoldina (german: Deutsch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scaling Law
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one quantity varies as a power of another. For instance, considering the area of a square in terms of the length of its side, if the length is doubled, the area is multiplied by a factor of four. Empirical examples The distributions of a wide variety of physical, biological, and man-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, the foraging pattern of various species, the sizes of activity patterns of neuronal populations, the frequencies of words in most languages, frequencies of family names, the species richness in clades of organisms, the sizes of power outages, volcanic eruptions, human judgments of stimulus intensity and many other quan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Energy Landscape
An energy landscape is a mapping of possible states of a system. The concept is frequently used in physics, chemistry, and biochemistry, e.g. to describe all possible conformations of a molecular entity, or the spatial positions of interacting molecules in a system, or parameters and their corresponding energy levels, typically Gibbs free energy. Geometrically, the energy landscape is the graph of the energy function across the configuration space of the system. The term is also used more generally in geometric perspectives to mathematical optimization, when the domain of the loss function is the parameter space of some system. Applications The term is useful when examining protein folding; while a protein can theoretically exist in a nearly infinite number of conformations along its energy landscape, in reality proteins fold (or "relax") into secondary and tertiary structures that possess the lowest possible free energy. The key concept in the energy landscape approac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernd Sturmfels
Bernd Sturmfels (born March 28, 1962 in Kassel, West Germany) is a Professor of Mathematics and Computer Science at the University of California, Berkeley and is a director of the Max Planck Institute for Mathematics in the Sciences in Leipzig since 2017. Education and career He received his PhD in 1987 from the University of Washington and the Technische Universität Darmstadt. After two postdoctoral years at the Institute for Mathematics and its Applications in Minneapolis, Minnesota, and the Research Institute for Symbolic Computation in Linz, Austria, he taught at Cornell University, before joining University of California, Berkeley in 1995. His Ph.D. students include Melody Chan, Jesús A. De Loera, Mike Develin, Diane Maclagan, Rekha R. Thomas, Caroline Uhler, and Cynthia Vinzant. Contributions Bernd Sturmfels has made contributions to a variety of areas of mathematics, including algebraic geometry, commutative algebra, discrete geometry, Gröbner bases, toric vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]