Malcev Lie Algebra
   HOME
*





Malcev Lie Algebra
In mathematics, a Malcev Lie algebra, or Mal'tsev Lie algebra, is a generalization of a rational nilpotent Lie algebra, and Malcev groups are similar. Both were introduced by , based on the work of . Definition According to a Malcev Lie algebra is a rational Lie algebra L together with a complete, descending -vector space filtration \_ , such that: * F_1 L = L * _rL, F_sLsubset F_L * the associated graded Lie algebra \oplus_ F_rL/F_L is generated by elements of degree one. Applications Relation to Hopf algebras showed that Malcev Lie algebras and Malcev groups are both equivalent to complete Hopf algebras, i.e., Hopf algebras ''H'' endowed with a filtration so that ''H'' is isomorphic to \varprojlim H / F_n H. The functors involved in these equivalences are as follows: a Malcev group ''G'' is mapped to the completion (with respect to the augmentation ideal) of its group ring Q''G'', with inverse given by the group of ''grouplike elements'' of a Hopf algebra ''H'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings ( Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Algebra
Hopf is a German surname. Notable people with the surname include: * Eberhard Hopf (1902–1983), Austrian mathematician * Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician * Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf Ludwig Hopf (23 October 1884 in Nürnberg, Germany – 23 December 1939 in Dublin]) was a German-Jewish theoretical physicist who made contributions to mathematics, special relativity, hydrodynamics, and aerodynamics. Early in his career ... (1884–1939), German physicist * Maria Hopf (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtration (mathematics)
In mathematics, a filtration \mathcal is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that ::if i\leq j in I, then S_i\subseteq S_j. If the index i is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure S_i gaining in complexity with time. Hence, a process that is adapted to a filtration \mathcal is also called non-anticipating, because it cannot "see into the future". Sometimes, as in a filtered algebra, there is instead the requirement that the S_i be subalgebras with respect to some operations (say, vector addition), but not with respect to other operations (say, multiplication) that satisfy only S_i \cdot S_j \subseteq S_, where the index set is the natural numbers; this is by analogy with a graded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Augmentation Ideal
In algebra, an augmentation ideal is an ideal that can be defined in any group ring. If ''G'' is a group and ''R'' a commutative ring, there is a ring homomorphism \varepsilon, called the augmentation map, from the group ring R /math> to R, defined by taking a (finiteWhen constructing , we restrict to only finite (formal) sums) sum \sum r_i g_i to \sum r_i. (Here r_i\in R and g_i\in G.) In less formal terms, \varepsilon(g)=1_R for any element g\in G, \varepsilon(r) = r for any element r\in R, and \varepsilon is then extended to a homomorphism of ''R''-modules in the obvious way. The augmentation ideal is the kernel of \varepsilon and is therefore a two-sided ideal in ''R'' 'G'' is generated by the differences g - g' of group elements. Equivalently, it is also generated by \, which is a basis as a free ''R''-module. For ''R'' and ''G'' as above, the group ring ''R'' 'G''is an example of an ''augmented'' ''R''-algebra. Such an algebra comes equipped with a ring homomorp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let ''G'' be a group, written multiplicatively, and let ''R'' be a ring. The group ring of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Element (coalgebra)
In algebra, a primitive element of a co-algebra ''C'' (over an element ''g'') is an element ''x'' that satisfies :\mu(x) = x \otimes g + g \otimes x where \mu is the co-multiplication and ''g'' is an element of ''C'' that maps to the multiplicative identity 1 of the base field under the co-unit (''g'' is called ''group-like''). If ''C'' is a bi-algebra, i.e., a co-algebra that is also an algebra (with certain compatibility conditions satisfied), then one usually takes ''g'' to be 1, the multiplicative identity of ''C''. The bi-algebra ''C'' is said to be primitively generated if it is generated by primitive elements (as an algebra). If ''C'' is a bi-algebra, then the set of primitive elements form a Lie algebra with the usual commutator bracket , y= xy - yx (graded commutator if ''C'' is graded). If ''A'' is a connected graded cocommutative Hopf algebra over a field of characteristic zero, then the Milnor–Moore theorem states the universal enveloping algebra In mathematics, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Enveloping Algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a differential algebra. They also play a central role in some recent developments in mathematics. In particular, their dual provides a commutative example of the objects studied in non-commutative geometry, the quantum groups. This dual can be shown, by the Gelfa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cyclic Homology
In noncommutative geometry and related branches of mathematics, cyclic homology and cyclic cohomology are certain (co)homology theories for associative algebras which generalize the de Rham (co)homology of manifolds. These notions were independently introduced by Boris Tsygan (homology) and Alain Connes (cohomology) in the 1980s. These invariants have many interesting relationships with several older branches of mathematics, including de Rham theory, Hochschild (co)homology, group cohomology, and the K-theory. Contributors to the development of the theory include Max Karoubi, Yuri L. Daletskii, Boris Feigin, Jean-Luc Brylinski, Mariusz Wodzicki, Jean-Louis Loday, Victor Nistor, Daniel Quillen, Joachim Cuntz, Ryszard Nest, Ralf Meyer, and Michael Puschnigg. Hints about definition The first definition of the cyclic homology of a ring ''A'' over a field of characteristic zero, denoted :''HC''''n''(''A'') or ''H''''n''λ(''A''), proceeded by the means of the following explic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace Method
Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album) Other uses in arts and entertainment * ''Trace'' (magazine), British hip-hop magazine * ''Trace'' (manhwa), a Korean internet cartoon * ''Trace'' (novel), a novel by Patricia Cornwell * ''The Trace'' (film), a 1994 Turkish film * ''The Trace'' (video game), 2015 video game * ''Sama'' (film), alternate title ''The Trace'', a 1988 Tunisian film * Trace, a fictional character in the game '' Metroid Prime Hunters'' * Trace, the protagonist of ''Axiom Verge'' * Trace, another name for Portgas D. Ace, a fictional character in the manga ''One Piece'' * TRACE, the main brand for a number of music channels such as Trace Urban Language * Trace (deconstruction), a concept in Derridian deconstruction * Trace (linguistics), a syntactic placeholder resulting from a transformation * TRACE (psych ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mixed Hodge Structure
In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties. In mixed Hodge theory, where the decomposition of a cohomology group H^k(X) may have subspaces of different weights, i.e. as a direct sum of Hodge structures :H^k(X) = \bigoplus_i (H_i, F_i^\bullet) where each of the Hodge structures have weight k_i. One of the early hints that such structures should exist comes from the long exact sequence of a pair of smooth projective varieties Y \subset X . The cohomology groups H^i_c(U) (for U = X - Y ) should have differing weights coming from both H^i(X) and H^(Y) . Motivation Originally, Hodge structures were introduced as a tool for keeping track of abstract Hodge decompositions on the cohomology groups of smooth projective algebraic varieties. These structures gave geometers new tools for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hodge Theory
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology. It has major applications in two settings: Riemannian manifolds and Kähler manifolds. Hodge's primary motivation, the study of complex projective varieties, is encompassed by the latter case. Hodge theory has become an important tool in algebraic geometry, particularly through its connection to the study of algebraic cycles. While Hodge theory is intrinsically dependent upon the real and complex numbers, it can be applied to questions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]