HOME





Mueller Calculus
Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix. Introduction Disregarding coherent wave superposition, any fully polarized, partially polarized, or unpolarized state of light can be represented by a Stokes vector ; and any optical element can be represented by a Mueller matrix (M). If a beam of light is initially in the state \vec_i and then passes through an optical element M and comes out in a state \vec_o, then it is written : \vec_o = \mathrm \vec_i \ . If a beam of light passes through optical element M1 followed by M2 then M3 it is written : \vec_o = \mathrm_3 \left(\mathrm_2 \left(\mathrm_1 \vec_i\right) \right) given that matrix multiplication is associative it can be written : \vec_o = \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stokes Vectors
The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation. They were defined by George Gabriel Stokes in 1852, as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (''I''), (fractional) degree of polarization (''p''), and the shape parameters of the polarization ellipse. The effect of an optical system on the polarization of light can be determined by constructing the Stokes vector for the input light and applying Mueller calculus, to obtain the Stokes vector of the light leaving the system. The original Stokes paper was discovered independently by Francis Perrin in 1942 and by Subrahamanyan Chandrasekhar in 1947, who named it as the Stokes parameters. Definitions The relationship of the Stokes parameters ''S''0, ''S''1, ''S''2, ''S''3 to intensity and polarization ellipse parameters is shown in the equations below and the figur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase (waves)
In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it varies by one full turn as the variable t goes through each period (and F(t) goes through each complete cycle). It may be measured in any angular unit such as degrees or radians, thus increasing by 360° or 2\pi as the variable t completes a full period. This convention is especially appropriate for a sinusoidal function, since its value at any argument t then can be expressed as \phi(t), the sine of the phase, multiplied by some factor (the amplitude of the sinusoid). (The cosine may be used instead of sine, depending on where one considers each period to start.) Usually, whole turns are ignored when expressing the phase; so that \phi(t) is also a periodic function, with the same period as F, that repeatedly scans the same range ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Shurcliff
William Asahel Shurcliff (March 27, 1909 – June 20, 2006) was an American physicist. Biography He received his BA cum laude in 1930, a PhD in Physics in 1934, and a degree in Business Administration in 1935, all from Harvard University. In the 1930s he worked at the Spectrophotometric Laboratory at the Calco Chemical Division of the American Cyanamid Company. Atomic bomb In 1942 he joined the staff of the Office of Scientific Research and Development, where he worked in the Liaison Office, processing technical information obtained from overseas and routing it to divisions within US government research where it could be useful. In May 1942 he was chosen by his boss, Vannevar Bush, to be part of S-1 Section, which would become the Manhattan Project to make the atomic bomb. Shurcliff's role was specifically to be a censor of patents: he would review patent applications from the private sector which appeared to impinge on topics being developed in secret by the government, and put ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The Optical Society Of America
The ''Journal of the Optical Society of America'' is a peer-reviewed scientific journal of optics, published by Optica. It was established in 1917 and in 1984 was split into two parts, A and B. ''Journal of the Optical Society of America A'' Part A covers various topics in optics, vision, and image science. The editor-in-chief is Olga Korotkova (University of Miami, USA). ''Journal of the Optical Society of America B'' Part B covers various topics in the field of optical physics, such as guided waves, laser spectroscopy, nonlinear optics, quantum optics, lasers, organic and polymer materials for optics, and ultrafast phenomena In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by .... The editor-in-chief is Kurt Busch ( Humboldt University of Berlin, Germany). References {{refl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Spo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eugene Hecht
Eugene Hecht (born 2 December 1938 in New York City) is an American physicist and author of a standard work in optics. Hecht studied at New York University (B.S. in E.P. 1960), Rutgers University (M. Sc. 1963), Adelphi University (Ph.D. 1967). During his graduate study he worked at Radio Corporation of America. He became interested in optics in the 1960s and began writing about it in 1970, e.g., polarization. Adelphi University hired Hecht to teach and he became professor in 1978 and he retired in 2021. Hecht challenged the notion of potential energy in 2003. The elusive nature of a universal definition of energy was argued by Hecht in a letter to the editor of ''The Physics Teacher'' in 2004. Then in 2006 he wrote "There is no really good definition of mass". He continued with the topic in 2011 and 2016. Eugene Hecht is also widely published authority on George E. Ohr and American art pottery as well as a founding member of the American Ceramic Arts Society. Books His first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stokes Parameters
The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation. They were defined by George Gabriel Stokes in 1852, as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (''I''), (fractional) degree of polarization (''p''), and the shape parameters of the polarization ellipse. The effect of an optical system on the polarization of light can be determined by constructing the Stokes vector for the input light and applying Mueller calculus, to obtain the Stokes vector of the light leaving the system. The original Stokes paper was discovered independently by Francis Perrin in 1942 and by Subrahamanyan Chandrasekhar in 1947, who named it as the Stokes parameters. Definitions The relationship of the Stokes parameters ''S''0, ''S''1, ''S''2, ''S''3 to intensity and polarization ellipse parameters is shown in the equations below and the figur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wave Plate
A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the ''half-wave plate'', which shifts the polarization direction of linearly polarized light, and the ''quarter-wave plate'', which converts linearly polarized light into circularly polarized light and vice versa. A quarter-wave plate can be used to produce elliptical polarization as well. Waveplates are constructed out of a birefringent material (such as quartz or mica, or even plastic), for which the index of refraction is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the wavelength of light, and the variation of the index of refraction. By appropriate choice of the relationship between these parameters, it is possible to introduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kronecker Product
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Man ... on two matrix (mathematics), matrices of arbitrary size resulting in a block matrix. It is a generalization of the outer product (which is denoted by the same symbol) from vectors to matrices, and gives the matrix of the tensor product linear map with respect to a standard choice of Basis (linear algebra), basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product. The Kronecker product is named after the German mathematician Leopold Kronecker (1823–1891), even though there is little evidence that he was th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \boldsymbol is an n \times m matrix obtained by transposing \boldsymbol and applying complex conjugate on each entry (the complex conjugate of a+ib being a-ib, for real numbers a and b). It is often denoted as \boldsymbol^\mathrm or \boldsymbol^* or \boldsymbol'. H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932. For real matrices, the conjugate transpose is just the transpose, \boldsymbol^\mathrm = \boldsymbol^\mathsf. Definition The conjugate transpose of an m \times n matrix \boldsymbol is formally defined by where the subscript ij denotes the (i,j)-th entry, for 1 \le i \le n and 1 \le j \le m, and the overbar denotes a scalar complex conjugate. This definition can also be written as :\boldsymbol^\mathrm = \left(\overline\right)^\mathsf = \overline where \boldsymbol^\mathsf denotes the transpose and \overline denotes th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intensity (physics)
In physics, the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2), or kg⋅ s−3 in base units. Intensity is used most frequently with waves such as acoustic waves (sound) or electromagnetic waves such as light or radio waves, in which case the ''average'' power transfer over one period of the wave is used. ''Intensity'' can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler. The word "intensity" as used here is not synonymous with " strength", "amplitude", " magnitude", or " level", as it sometimes is in colloquial speech. Intensity can be found by taking the energy density (energy per unit volume) at a point in space and multiplying it by the velocity at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarization (waves)
Polarization ( also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string ''(see image)''; for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves ( shear waves) in solids. An electromagneti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]