Mordell's Conjecture
   HOME





Mordell's Conjecture
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field \mathbb of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing \mathbb by any number field. Background Let C be a non-singular algebraic curve of genus g over \mathbb. Then the set of rational points on C may be determined as follows: * When g=0, there are either no points or infinitely many. In such cases, C may be handled as a conic section. * When g=1, if there are any points, then C is an elliptic curve and its rational points form a finitely generated abelian group. (This is ''Mordell's Theorem'', later generalized to the Mordell–Weil theorem.) Moreover, Mazur's torsion theorem restricts the structure of the torsion subgroup. * When g>1, according to Faltings's theorem, C has only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties. In more abstract terms, arithmetic geometry can be defined as the study of schemes of finite type over the spectrum of the ring of integers. Overview The classical objects of interest in arithmetic geometry are rational points: sets of solutions of a system of polynomial equations over number fields, finite fields, p-adic fields, or function fields, i.e. fields that are not algebraically closed excluding the real numbers. Rational points can be directly characterized by height functions which measure their arithmetic complexity. The structure of algebraic varieties defined over non-algebraically closed fields has become a central area of interest that arose with the modern abstract development of algebraic geometry. Over finite fie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mazur's Torsion Theorem
In algebraic geometry and number theory, the torsion conjecture or uniform boundedness conjecture for torsion points for abelian varieties states that the order of the torsion group of an abelian variety over a number field can be bounded in terms of the dimension of the variety and the number field. A stronger version of the conjecture is that the torsion is bounded in terms of the dimension of the variety and the degree of the number field. The torsion conjecture has been completely resolved in the case of elliptic curves. Elliptic curves From 1906 to 1911, Beppo Levi published a series of papers investigating the possible finite orders of points on elliptic curves over the rationals. He showed that there are infinitely many elliptic curves over the rationals with the following torsion groups: * ''C''''n'' with 1 ≤ ''n'' ≤ 10, where ''C''''n'' denotes the cyclic group of order ''n''; * ''C''12; * ''C''2n × ''C''2 with 1 ≤ ''n'' ≤ 4, where × denotes the direct sum. At ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diophantine Approximation
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number ''p''/''q'' is a "good" approximation of a real number ''α'' if the absolute value of the difference between ''p''/''q'' and ''α'' may not decrease if ''p''/''q'' is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of simple continued fractions. Knowing the "best" approximations of a given number, the main problem of the field is to find sharp upper and lower bounds of the above difference, expressed as a function of the denominator. It appears that these bounds depend on the nature of the real numbers to be approximated: the lower bound for the approximation of a rational number by another rational number i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Vojta
Paul Alan Vojta (born September 30, 1957) is an American mathematician, known for his work in number theory on Diophantine geometry and Diophantine approximation. Contributions In formulating Vojta's conjecture, he pointed out the possible existence of parallels between the Nevanlinna theory of complex analysis, and diophantine analysis in the circle of ideas around the Mordell conjecture and abc conjecture. This suggested the importance of the ''integer solutions'' (affine space) aspect of diophantine equations. Vojta wrote the .dvi-previewer xdvi. He also wrote a vi clone. Education and career He was an undergraduate student at the University of Minnesota, where he became a Putnam Fellow in 1977, and a doctoral student at Harvard University (1983). He currently is a professor in the Department of Mathematics at the University of California, Berkeley. Awards and honors In 2012 he became a fellow of the American Mathematical Society The American Mathematical Society (AM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Siegel Modular Variety
In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943. Siegel modular varieties are the most basic examples of Shimura varieties. Siegel modular varieties generalize moduli spaces of elliptic curves to higher dimensions and play a central role in the theory of Siegel modular forms, which generalize classical modular forms to higher dimensions. They also have applications to black hole entropy and conformal field theory. Construction The Siegel modular variety ''A''''g'', which parametrize principally polarized abelian varieties of dimension ''g'', can be constructed as the complex analytic spaces constructed as the quotient of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Height Function
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the ''classical'' or ''naive height'' over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g. for the coordinates ), but in a logarithmic scale. Significance Height functions allow mathematicians to count objects, such as rational points, that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. In this sense, height functions can be used to prove asymptotic results such as Baker's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Néron Model
In algebraic geometry, the Néron model (or Néron minimal model, or minimal model) for an abelian variety ''AK'' defined over the field of fractions ''K'' of a Dedekind domain ''R'' is the "push-forward" of ''AK'' from Spec(''K'') to Spec(''R''), in other words the "best possible" group scheme ''AR'' defined over ''R'' corresponding to ''AK''. They were introduced by for abelian varieties over the quotient field of a Dedekind domain ''R'' with perfect residue fields, and extended this construction to semiabelian varieties over all Dedekind domains. Definition Suppose that ''R'' is a Dedekind domain with field of fractions ''K'', and suppose that ''AK'' is a smooth separated scheme over ''K'' (such as an abelian variety). Then a Néron model of ''AK'' is defined to be a smooth morphism, smooth Separated morphism, separated scheme ''AR'' over ''R'' with fiber ''AK'' that is universal in the following sense. :If ''X'' is a smooth separated scheme over ''R'' then any ''K''-mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE