Mermin's Device
   HOME



picture info

Mermin's Device
In physics, Mermin's device or Mermin's machine is a thought experiment intended to illustrate the non-classical features of nature without making a direct reference to quantum mechanics. The challenge is to reproduce the results of the thought experiment in terms of classical physics. The input of the experiment are particles, starting from a common origin, that reach detectors of a device that are independent from each other, the output are the lights of the device that turn on following a specific set of statistics depending on the configuration of the device. The results of the thought experiment are constructed in such a way to reproduce the result of a Bell test using quantum entanglement, quantum entangled particles, which demonstrate how quantum mechanics cannot be explained using a local hidden variable theory. In this way Mermin's device is a pedagogical tool to introduce the unconventional features of quantum mechanics to a larger public. History The original version w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Bohm
David Joseph Bohm (; 20 December 1917 – 27 October 1992) was an American scientist who has been described as one of the most significant Theoretical physics, theoretical physicists of the 20th centuryDavid Peat Who's Afraid of Schrödinger's Cat? The New Science Revealed: Quantum Theory, Relativity, Chaos and the New Cosmology 1997, pp. 316–317 and who contributed unorthodox ideas to quantum mechanics, quantum theory, neuropsychology and the philosophy of mind. Among his many contributions to physics is his causal and deterministic interpretation of quantum theory known as De Broglie–Bohm theory. Bohm advanced the view that quantum physics meant that the old Dualism (philosophy of mind), Cartesian model of reality—that there are two kinds of substance, the mental and the physical, that somehow interact—was too limited. To complement it, he developed a mathematical and physical theory of Implicate and explicate order, "implicate" and "explicate" order.David Bohm: ''Wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Pseudo-telepathy
Quantum pseudo-telepathy describes the use of quantum entanglement to eliminate the need for classical communications. A nonlocal game is said to display quantum pseudo-telepathy if players who can use entanglement can win it with certainty while players without it can not. The prefix ''pseudo'' refers to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseudo-telepathy removes the need for parties to exchange information in some circumstances. Quantum pseudo-telepathy is generally used as a thought experiment to demonstrate the non-local characteristics of quantum mechanics. However, quantum pseudo-telepathy is a real-world phenomenon which can be verified experimentally. It is thus an especially striking example of an experimental confirmation of Bell inequality violations. The magic square game A simple magic square game demonstrating nonclassical correlations was introduced by P. K. Aravind based on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greenberger–Horne–Zeilinger State
In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger (GHZ) state is an entangled quantum state that involves at least three subsystems (particle states, qubits, or qudits). Named for the three authors that first described this state, the GHZ state predicts outcomes from experiments that directly contradict predictions by every classical local hidden-variable theory. The state has applications in quantum computing. History The four-particle version was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989. The following year Abner Shimony joined in and they published a three-particle version based on suggestions by N. David Mermin. Experimental measurements on such states contradict intuitive notions of locality and causality. GHZ states for large numbers of qubits are theorized to give enhanced performance for metrology compared to other qubit superposition states. Definition The GHZ state is an entangled q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hidden Variable Theory
In physics, a hidden-variable theory is a deterministic model which seeks to explain the probabilistic nature of quantum mechanics by introducing additional, possibly inaccessible, variables. The mathematical formulation of quantum mechanics assumes that the state of a system prior to measurement is indeterminate; quantitative bounds on this indeterminacy are expressed by the Heisenberg uncertainty principle. Most hidden-variable theories are attempts to avoid this indeterminacy, but possibly at the expense of requiring that nonlocal interactions be allowed. One notable hidden-variable theory is the de Broglie–Bohm theory. In their 1935 EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen argued that quantum entanglement might imply that quantum mechanics is an incomplete description of reality. John Stewart Bell in 1964, in his eponymous theorem proved that correlations between particles under any local hidden variable theory must obey certain constraints. Subse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aspect's Experiment
Aspect's experiment was the first quantum mechanics experiment to demonstrate the violation of Bell's inequalities with photons using distant detectors. Its 1982 result allowed for further validation of the quantum entanglement and locality principles. It also offered an experimental answer to Albert Einstein, Boris Podolsky, and Nathan Rosen's paradox which had been proposed about fifty years earlier. It was the first experiment to remove the locality loophole, as it was able to modify the angle of the polarizers while the photons were in flight, faster than what light would take to reach the other polarizer, removing the possibility of communications between detectors. The experiment was led by French physicist Alain Aspect at the Institut d'optique théorique et appliquée in Orsay between 1980 and 1982. Its importance was immediately recognized by the scientific community. Although the methodology carried out by Aspect presents a potential flaw, the detection loophole, hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarizer
A polarizer or polariser is an optical filter that lets light waves of a specific polarization (waves), polarization pass through while attenuation, blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, known as polarized light. Polarizers are used in many optics, optical techniques and optical instrument, instruments. Polarizers find applications in photography and liquid crystal display, LCD technology. In photography, a polarizing filter (photography), polarizing filter can be used to filter out reflections. The common types of polarizers are linear polarizers and circular polarizers. Polarizers can also be made for other types of electromagnetic waves besides visible light, such as radio waves, microwaves, and X-rays. Linear polarizers ''Linear polarizers'' can be divided into two general categories: absorptive polarizers, where the unwanted polarization states are absorption ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarization (physics)
, or , is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. One example of a polarized transverse wave is vibrations traveling along a taut string, for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves ( shear waves) in solids. An electromagnetic wave such as light consists of a coupled oscillating el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can move no faster than the speed of light measured in vacuum. The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While Planck was trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, he proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the pho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stern–Gerlach Experiment
In quantum physics, the Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantization (physics), quantized. Thus an Atomic spacing, atomic-scale system was shown to have intrinsically quantum properties. In the original experiment, silver atoms were sent through a spatially-varying magnetic field, which Deflection (physics), deflected them before they struck a detector screen, such as a glass slide. Particles with non-zero magnetic moment were deflected, owing to the magnetic field spatial gradient, gradient, from a straight path. The screen revealed discrete points of accumulation, rather than a continuous distribution, owing to their quantized Spin (physics), spin. Historically, this experiment was decisive in convincing physicists of the reality of angular-momentum quantization in all atomic-scale systems. After its conception by Otto Stern in 1921, the experiment was first successfully conducted with Walther Gerlach in early 1922. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell State
In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particles being in one of the mentioned states is 1: \langle \Phi, \Phi \rangle = 1. Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will " collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for three or more subsystems. Understanding of Bell's states is useful in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]