Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integral, integration theory, and can be generalized to assume signed measure, negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile B ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measure Illustration (Vector)
Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England measure, legislation of the Church of England * Measure of the National Assembly for Wales, primary legislation in Wales between 1999 and 2011 * Assembly Measure of the Northern Ireland Assembly (1973) Science and mathematics * Measure (data warehouse), a property on which calculations can be made * Measure (mathematics), a systematic way to assign a number to each suitable subset of a given set * Measure (physics), a way to integrate over all possible histories of a system in quantum field theory * Measure (termination), in computer program termination analysis * Measuring coalgebra, a coalgebra constructed from two algebras * Measure (Apple), an iOS augmented reality app Other uses * Measure (album), ''Measure'' (album), by Matt Pond PA, 2000, and its title track * Measure (bartend ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedes
Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenistic Sicily, Sicily. Although few details of his life are known, based on his surviving work, he is considered one of the leading scientists in classical antiquity, and one of the greatest mathematicians of all time. Archimedes anticipated modern calculus and mathematical analysis, analysis by applying the concept of the Cavalieri's principle, infinitesimals and the method of exhaustion to derive and rigorously prove many geometry, geometrical theorem, theorems, including the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Archimedes' other math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigma Additivity
In mathematics, an additive set function is a function \mu mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of ''k'' disjoint sets (where ''k'' is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms are equivalent). However, a finitely additive set function might not have the additivity property for a union of an ''infinite'' number of sets. A σ-additive set function is a function that has the additivity property even for countably infinite many sets, that is, \mu\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu(A_n). Additivity and sigma-additivity are particularly important properties of measures. They ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extended Real Number Line
In mathematics, the extended real number system is obtained from the real number system \R by adding two elements denoted +\infty and -\infty that are respectively greater and lower than every real number. This allows for treating the potential infinities of infinitely increasing sequences and infinitely decreasing series as actual infinities. For example, the infinite sequence (1,2,\ldots) of the natural numbers increases ''infinitively'' and has no upper bound in the real number system (a potential infinity); in the extended real number line, the sequence has +\infty as its least upper bound and as its limit (an actual infinity). In calculus and mathematical analysis, the use of +\infty and -\infty as actual limits extends significantly the possible computations. It is the Dedekind–MacNeille completion of the real numbers. The extended real number system is denoted \overline, \infty,+\infty/math>, or \R\cup\left\. When the meaning is clear from context, the symbol +\inf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Function
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R and \pm \infty. A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning. Definitions If \mathcal is a family of sets over \Omega (meaning that \mathcal \subseteq \wp(\Omega) where \wp(\Omega) denotes the powerset) then a is a function \mu with domain \mathcal and codomain \infty, \infty/math> or, sometimes, the codomain is instead some vector space, as with vector measures, complex measures, and projection-valued measures. The domain of a set function may have any number properties; the commonly encountered properties and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
σ-algebra
In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra") is part of the formalism for defining sets that can be measured. In calculus and analysis, for example, σ-algebras are used to define the concept of sets with area or volume. In probability theory, they are used to define events with a well-defined probability. In this way, σ-algebras help to formalize the notion of ''size''. In formal terms, a σ-algebra (also σ-field, where the σ comes from the German "Summe", meaning "sum") on a set ''X'' is a nonempty collection Σ of subsets of ''X'' closed under complement, countable unions, and countable intersections. The ordered pair (X, \Sigma) is called a measurable space. The set ''X'' is understood to be an ambient space (such as the 2D plane or the set of outcomes when rolling a six-sided die ), and the collection Σ is a choice of subsets declared to have a well-defined size. The closure requirements for σ-algebras are designed to cap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable Additivity Of A Measure
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maurice Fréchet
Maurice may refer to: *Maurice (name), a given name and surname, including a list of people with the name Places * or Mauritius, an island country in the Indian Ocean * Maurice, Iowa, a city * Maurice, Louisiana, a village * Maurice River, a tributary of the Delaware River in New Jersey Other uses * ''Maurice'' (2015 film), a Canadian short drama film * Maurice (horse), a Thoroughbred racehorse * ''Maurice'' (novel), a 1913 novel by E. M. Forster, published in 1971 ** ''Maurice'' (1987 film), a British film based on the novel * ''Maurice'' (Shelley), a children's story by Mary Shelley *Maurice, a character from the Madagascar ''franchise'' *Maurices, an American retail clothing chain *Maurice or Maryse, a type of cooking spatula See also *Church of Saint Maurice (other) * *Maurice Debate, a 1918 debate in the British House of Commons *Maurice Lacroix, Swiss manufacturer of mechanical timepieces, clocks, and watches *Mauricie, Quebec, Canada *Moritz (other) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constantin Carathéodory
Constantin Carathéodory (; 13 September 1873 – 2 February 1950) was a Greeks, Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, and measure theory. He also created an axiomatic formulation of thermodynamics. Carathéodory is considered one of the greatest mathematicians of his era and the most renowned Greek mathematics, Greek mathematician since Ancient history, antiquity. Origins Constantin Carathéodory was born in 1873 in Berlin to Greeks, Greek parents and grew up in Brussels. His father , a lawyer, served as the Ottoman Empire, Ottoman ambassador to Belgium, St. Petersburg and Berlin. His mother, Despina, née Petrokokkinos, was from the island of Chios. The Carathéodory family, originally from Bosna, Edirne, Bosna, was well established and respected in Istanbul, Constantinople, and its members held many important governmental positions. His grandfather ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Johann Radon
Johann Karl August Radon (; 16 December 1887 – 25 May 1956) was an Austrian mathematician. His doctoral dissertation was on the calculus of variations (in 1910, at the University of Vienna). Life RadonBrigitte Bukovics: ''Biography of Johann Radon'', in: 75 Years of Radon Transform, S. Gindikin and P. Michor, eds., International Press Incorporated (1994), pp. 13–18, was born in Tetschen, Bohemia, Austria-Hungary, now Děčín, Czech Republic. He received his doctoral degree at the University of Vienna in 1910. He spent the winter semester 1910/11 at the University of Göttingen, then he was an assistant at the German Technical University in Brno, and from 1912 to 1919 at the Technical University of Vienna. In 1913/14, he passed his habilitation at the University of Vienna. Due to his near-sightedness, he was exempt from the draft during wartime. In 1919, he was called to become Professor extraordinarius at the newly founded University of Hamburg; in 1922, he became '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nikolai Luzin
Nikolai Nikolayevich Luzin (also spelled Lusin; rus, Никола́й Никола́евич Лу́зин, p=nʲɪkɐˈlaj nʲɪkɐˈlajɪvʲɪtɕ ˈluzʲɪn, a=Ru-Nikilai Nikilayevich Luzin.ogg; 9 December 1883 – 28 February 1950) was a Soviet and Russian mathematician known for his work in descriptive set theory and aspects of mathematical analysis with strong connections to point-set topology. He was the eponym of Luzitania, a loose group of young Moscow mathematicians of the first half of the 1920s. They adopted his set-theoretic orientation, and went on to apply it in other areas of mathematics. Life He started studying mathematics in 1901 at Moscow State University, where his advisor was Dmitri Egorov. He graduated in 1905. Luzin underwent great personal turmoil in the years 1905 and 1906, when his materialistic worldview had collapsed and he found himself close to suicide. In 1906 he wrote to Pavel Florensky, a former fellow mathematics student who was now studying ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |