Mean Dimension
In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological dynamical systems in shift spaces (over Euclidean cubes). General definition A topological dynamical system consists of a compact Hausdorff topological space \textstyle X and a continuous self-map \textstyle T:X\rightarrow X. Let ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Dynamical System
In mathematics, topological dynamics is a branch of the theory of dynamical systems in which qualitative, asymptotic properties of dynamical systems are studied from the viewpoint of general topology. Scope The central object of study in topological dynamics is a topological dynamical system, i.e. a topological space, together with a continuous transformation, a continuous flow, or more generally, a semigroup of continuous transformations of that space. The origins of topological dynamics lie in the study of asymptotic properties of trajectories of systems of autonomous ordinary differential equations, in particular, the behavior of limit sets and various manifestations of "repetitiveness" of the motion, such as periodic trajectories, recurrence and minimality, stability, non-wandering points. George Birkhoff is considered to be the founder of the field. A structure theorem for minimal distal flows proved by Hillel Furstenberg in the early 1960s inspired much work on classificat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mikhail Leonidovich Gromov
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; ; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University. Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry". Early years, education and career Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His father Leonid Gromov was Russian-Slavic and his mother Lea was of Jewish heritage. Both were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine years ol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elon Lindenstrauss
Elon Lindenstrauss (; born August 1, 1970) is an Israeli mathematician, and a winner of the 2010 Fields Medal. Since 2004, he has been a professor at Princeton University. In 2009, he was appointed as a Professor at the Einstein Institute of Mathematics at the Hebrew University. In 2024 he was appointed a permanent faculty member in the School of Mathematics of the Institute for Advanced Study. Biography Lindenstrauss was born into an Israeli-Jewish family with German Jewish origins, the son of the mathematician Joram Lindenstrauss, the namesake of the Johnson–Lindenstrauss lemma, and computer scientist Naomi Lindenstrauss, both professors at the Hebrew University of Jerusalem. His sister Ayelet Lindenstrauss is also a mathematician. He attended the Hebrew University Secondary School. In 1988 he was awarded a bronze medal at the International Mathematical Olympiad. He enlisted to the IDF's Talpiot program and studied at the Hebrew University of Jerusalem, where he earne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Benjamin Weiss
Benjamin Weiss (; born 1941) is an American-Israeli mathematician known for his contributions to ergodic theory, topological dynamics, probability theory, game theory, and descriptive set theory. Biography Benjamin ("Benjy") Weiss was born in New York City. In 1962 he received B.A. from Yeshiva University and M.A. from the Graduate School of Science, Yeshiva University. In 1965, he received his Ph.D. from Princeton under the supervision of William Feller. Academic career Between 1965 and 1967, Weiss worked at the IBM Research. In 1967, he joined the faculty of the Hebrew University of Jerusalem; and since 1990 occupied the Miriam and Julius Vinik Chair in Mathematics (Emeritus since 2009). Weiss held visiting positions at Stanford, MSRI, and IBM Research Center. Weiss published over 180 papers in ergodic theory, topological dynamics, orbit equivalence, probability, information theory, game theory, descriptive set theory; with notable contributions including introduction of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Entropy
In mathematics, the topological entropy of a topological dynamical system is a nonnegative extended real number that is a measure of the complexity of the system. Topological entropy was first introduced in 1965 by Adler, Konheim and McAndrew. Their definition was modelled after the definition of the Kolmogorov–Sinai, or metric entropy. Later, Dinaburg and Rufus Bowen gave a different, weaker definition reminiscent of the Hausdorff dimension. The second definition clarified the meaning of the topological entropy: for a system given by an iterated function, the topological entropy represents the exponential growth rate of the number of distinguishable orbits of the iterates. An important variational principle relates the notions of topological and measure-theoretic entropy. Definition A topological dynamical system consists of a Hausdorff topological space ''X'' (usually assumed to be compact) and a continuous self-map ''f'' : ''X'' → ''X''. Its topolog ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Space
In mathematics, a universal space is a certain metric space that contains all metric spaces whose dimension is bounded by some fixed constant. A similar definition exists in topological dynamics. Definition Given a class \textstyle \mathcal of topological spaces, \textstyle \mathbb\in\mathcal is universal for \textstyle \mathcal if each member of \textstyle \mathcal embeds in \textstyle \mathbb. Menger stated and proved the case \textstyle d=1 of the following theorem. The theorem in full generality was proven by Nöbeling. Theorem: The \textstyle (2d+1)-dimensional cube \textstyle ,1 is universal for the class of compact metric spaces whose Lebesgue covering dimension is less than \textstyle d. Nöbeling went further and proved: Theorem: The subspace of \textstyle ,1 consisting of set of points, at most \textstyle d of whose coordinates are rational, is universal for the class of separable metric spaces whose Lebesgue covering dimension is less than \textstyle d. The last ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lebesgue Covering Dimension
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean spaces, the Lebesgue covering dimension is just the ordinary Euclidean dimension: zero for points, one for lines, two for planes, and so on. However, not all topological spaces have this kind of "obvious" dimension, and so a precise definition is needed in such cases. The definition proceeds by examining what happens when the space is covered by open sets. In general, a topological space ''X'' can be covered by open sets, in that one can find a collection of open sets such that ''X'' lies inside of their union. The covering dimension is the smallest number ''n'' such that for every cover, there is a refinement in which every point in ''X'' lies in the intersection of no more than ''n'' + 1 covering sets. This is the gist o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metrizable Space
In topology and related areas of mathematics, a metrizable space is a topological space that is Homeomorphism, homeomorphic to a metric space. That is, a topological space (X, \tau) is said to be metrizable if there is a Metric (mathematics), metric d : X \times X \to [0, \infty) such that the topology induced by d is \tau. ''Metrization theorems'' are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff space, Hausdorff paracompact spaces (and hence Normal space, normal and Tychonoff space, Tychonoff) and First-countable space, first-countable. However, some properties of the metric, such as Complete metric space, completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of Contraction mapping, contraction maps than a metri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem ( Magnes Press). History Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... was 0.754. External links * Mathematics journals Academic journals established in 1963 Academic journals of Israel English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimension Theory
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was foun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Entropy
In mathematics, the topological entropy of a topological dynamical system is a nonnegative extended real number that is a measure of the complexity of the system. Topological entropy was first introduced in 1965 by Adler, Konheim and McAndrew. Their definition was modelled after the definition of the Kolmogorov–Sinai, or metric entropy. Later, Dinaburg and Rufus Bowen gave a different, weaker definition reminiscent of the Hausdorff dimension. The second definition clarified the meaning of the topological entropy: for a system given by an iterated function, the topological entropy represents the exponential growth rate of the number of distinguishable orbits of the iterates. An important variational principle relates the notions of topological and measure-theoretic entropy. Definition A topological dynamical system consists of a Hausdorff topological space ''X'' (usually assumed to be compact) and a continuous self-map ''f'' : ''X'' → ''X''. Its topolog ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |