Langlands Dual Group
   HOME
*





Langlands Dual Group
In representation theory, a branch of mathematics, the Langlands dual ''L''''G'' of a reductive algebraic group ''G'' (also called the ''L''-group of ''G'') is a group that controls the representation theory of ''G''. If ''G'' is defined over a field ''k'', then ''L''''G'' is an extension of the absolute Galois group of ''k'' by a complex Lie group. There is also a variation called the Weil form of the ''L''-group, where the Galois group is replaced by a Weil group. Here, the letter ''L'' in the name also indicates the connection with the theory of L-functions, particularly the ''automorphic'' L-functions. The Langlands dual was introduced by in a letter to A. Weil. The ''L''-group is used heavily in the Langlands conjectures of Robert Langlands. It is used to make precise statements from ideas that automorphic forms are in a sense functorial in the group ''G'', when ''k'' is a global field. It is not exactly ''G'' with respect to which automorphic forms and representations are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Field
In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: * Algebraic number field: A finite extension of \mathbb *Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of \mathbb_q(T), the field of rational functions in one variable over the finite field with q=p^n elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. Formal definitions A ''global field'' is one of the following: ;An algebraic number field An algebraic number field ''F'' is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus ''F'' is a field that contains Q and has finite dimension when considered as a vector space over Q. ;The function field of an algebraic curve over a finite field A function field of a variety is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory Of Lie Groups
In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras. Finite-dimensional representations Representations A complex representation of a group is an action by a group on a finite-dimensional vector space over the field \mathbb C. A representation of the Lie group ''G'', acting on an ''n''-dimensional vector space ''V'' over \mathbb C is then a smooth group homomorphism :\Pi:G\rightarrow\operatorname(V), where \operatorname(V) is the general linear group of all invertible linear transformations of V under their composition. Since all ''n''-dimen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Grassmannian
In mathematics, the affine Grassmannian of an algebraic group ''G'' over a field ''k'' is an ind-scheme—a colimit of finite-dimensional schemes—which can be thought of as a flag variety for the loop group ''G''(''k''((''t''))) and which describes the representation theory of the Langlands dual group ''L''''G'' through what is known as the geometric Satake correspondence. Definition of Gr via functor of points Let ''k'' be a field, and denote by k\text and \mathrm the category of commutative ''k''-algebras and the category of sets respectively. Through the Yoneda lemma, a scheme ''X'' over a field ''k'' is determined by its functor of points, which is the functor X:k\text \to \mathrm which takes ''A'' to the set ''X''(''A'') of ''A''-points of ''X''. We then say that this functor is representable by the scheme ''X''. The affine Grassmannian is a functor from ''k''-algebras to sets which is not itself representable, but which has a filtration by representable functors. As ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Langlands Group
In mathematics, the Langlands group is a conjectural group ''L''''F'' attached to each local or global field ''F'', that satisfies properties similar to those of the Weil group. It was given that name by Robert Kottwitz. In Kottwitz's formulation, the Langlands group should be an extension of the Weil group by a compact group. When ''F'' is local archimedean, ''LF'' is the Weil group of ''F'', when ''F'' is local non-archimedean, ''LF'' is the product of the Weil group of ''F'' with SU(2). When ''F'' is global, the existence of ''LF'' is still conjectural, though James Arthur gives a conjectural description of it. The Langlands correspondence for ''F'' is a "natural" correspondence between the irreducible ''n''-dimensional complex representations of ''LF'' and, in the local case, the cuspidal automorphic representations of GL''n''(A''F''), where A''F'' denotes the adele Adele Laurie Blue Adkins (, ; born 5 May 1988), professionally kno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynkin Diagram
In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed graph, directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected graph, undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root Datum
In mathematical group theory, the root datum of a connected split reductive algebraic group over a field is a generalization of a root system that determines the group up to isomorphism. They were introduced by Michel Demazure in SGA III, published in 1970. Definition A root datum consists of a quadruple :(X^\ast, \Phi, X_\ast, \Phi^\vee), where * X^\ast and X_\ast are free abelian groups of finite rank together with a perfect pairing between them with values in \mathbb which we denote by ( , ) (in other words, each is identified with the dual of the other). * \Phi is a finite subset of X^\ast and \Phi^\vee is a finite subset of X_\ast and there is a bijection from \Phi onto \Phi^\vee, denoted by \alpha\mapsto\alpha^\vee. * For each \alpha, (\alpha, \alpha^\vee)=2. * For each \alpha, the map x\mapsto x-(x,\alpha^\vee)\alpha induces an automorphism of the root datum (in other words it maps \Phi to \Phi and the induced action on X_\ast maps \Phi^\vee to \Phi^\vee) The elements of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ''F''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functorial
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reductive Algebraic Group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group ''GL''(''n'') of invertible matrices, the special orthogonal group ''SO''(''n''), and the symplectic group ''Sp''(2''n''). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive. Claude Chevalley showed that the classification of reductive groups is the same over any algebraically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams, as in the theory of compact Lie groups or complex Lie algebra, complex semisimple Lie algebras. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]