HOME





List Of Mathematical Proofs
A list of articles with mathematical proofs: Theorems of which articles are primarily devoted to proving them *Bertrand's postulate and a proof *Estimation of covariance matrices * Fermat's little theorem and some proofs *Gödel's completeness theorem and its original proof *Mathematical induction and a proof * Proof that 0.999... equals 1 *Proof that 22/7 exceeds π *Proof that e is irrational *Proof that π is irrational *Proof that the sum of the reciprocals of the primes diverges Articles devoted to theorems of which a (sketch of a) proof is given *Banach fixed-point theorem *Banach–Tarski paradox *Basel problem *Bolzano–Weierstrass theorem *Brouwer fixed-point theorem *Buckingham π theorem (proof in progress) *Burnside's lemma *Cantor's theorem * Cantor–Bernstein–Schroeder theorem *Cayley's formula *Cayley's theorem *Clique problem (to do) *Compactness theorem (very compact proof) *Erdős–Ko–Rado theorem *Euler's formula *Euler's four-square identity *Euler' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an Inference, inferential Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for furthe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basel Problem
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in ''The Saint Petersburg Academy of Sciences''. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up years later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem. The Basel problem asks for the precise summation of the reciprocals of the squares of the natural numbers, i.e. the precise sum of the infinite series: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler's Four-square Identity
In mathematics, Euler's four-square identity says that the product of two numbers, each of which is a sum of four squares, is itself a sum of four squares. Algebraic identity For any pair of quadruples from a commutative ring, the following expressions are equal: \begin \left(a_1^2+a_2^2+a_3^2+a_4^2\right)\left(b_1^2+b_2^2+b_3^2+b_4^2\right) = & \left(a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4\right)^2 \\ &+ \left(a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3\right)^2 \\ &+ \left(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2\right)^2 \\ &+ \left(a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1\right)^2. \end Euler wrote about this identity in a letter dated May 4, 1748 to Goldbach (but he used a different sign convention from the above). It can be verified with elementary algebra. The identity was used by Lagrange to prove his four square theorem. More specifically, it implies that it is sufficient to prove the theorem for prime numbers, after which the more general theorem follows. The sign conventio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler's Formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for any real number : e^ = \cos x + i\sin x, where is the base of the natural logarithm, is the imaginary unit, and and are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted ("cosine plus i sine"). The formula is still valid if is a complex number, and so some authors refer to the more general complex version as Euler's formula. Euler's formula is ubiquitous in mathematics, physics, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". When , Euler's formula may be rewritten as , which is known as Euler's identity. History In 1714, the English mathematician Roger Cotes presented a geometrica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Erdős–Ko–Rado Theorem
In mathematics, the Erdős–Ko–Rado theorem limits the number of sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of The theorem applies to families of sets that all have the same and are all subsets of some larger set of size One way to construct a family of sets with these parameters, each two sharing an element, is to choose a single element to belong to all the subsets, and then form all of the subsets that contain the chosen element. The Erdős–Ko–Rado theorem states that when n is large enough for the problem to be nontrivial this construction produces the largest possible intersecting families. When n=2r there are other equally-large families, but for larger values of n only the families constructed in this way can be largest. The Erdős–Ko–Rado ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactness Theorem
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent. The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem (which says that the product of compact spaces is compact) applied to compact Stone spaces, hence the theorem's name. Likewise, it is analogous to the finite intersection property characterization of compactness in topological spaces: a collection of closed sets in a compact space has a non-empty intersection if every finite subcollection has a non-empty intersection. The compactness theorem is one of the two key properties, along with the downward Löwenheim–Skolem theorem, that is used in Lindström's theorem to characterize first-order l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique Problem
In computer science, the clique problem is the computational problem of finding cliques (subsets of vertices, all adjacent to each other, also called complete subgraphs) in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique (a clique with the largest possible number of vertices), finding a maximum weight clique in a weighted graph, listing all maximal cliques (cliques that cannot be enlarged), and solving the decision problem of testing whether a graph contains a clique larger than a given size. The clique problem arises in the following real-world setting. Consider a social network, where the graph's vertices represent people, and the graph's edges represent mutual acquaintance. Then a clique represents a subset of people who all know each other, and algorithms for finding cliques can be used to discover these groups of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cayley's Theorem
In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group is isomorphic to a subgroup of a symmetric group. More specifically, is isomorphic to a subgroup of the symmetric group \operatorname(G) whose elements are the permutations of the underlying set of . Explicitly, * for each g \in G, the left-multiplication-by- map \ell_g \colon G \to G sending each element to is a permutation of , and * the map G \to \operatorname(G) sending each element to \ell_g is an injective homomorphism, so it defines an isomorphism from onto a subgroup of \operatorname(G). The homomorphism G \to \operatorname(G) can also be understood as arising from the left translation action of on the underlying set . When is finite, \operatorname(G) is finite too. The proof of Cayley's theorem in this case shows that if is a finite group of order , then is isomorphic to a subgroup of the standard symmetric group S_n. But might also be isomorphic to a subgroup o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cayley's Formula
In mathematics, Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer n, the number of trees on n labeled vertices is n^. The formula equivalently counts the number of spanning trees of a complete graph with labeled vertices . Proof Many proofs of Cayley's tree formula are known. One classical proof of the formula uses Kirchhoff's matrix tree theorem, a formula for the number of spanning trees in an arbitrary graph involving the determinant of a matrix. Prüfer sequences yield a bijective proof of Cayley's formula. Another bijective proof, by André Joyal, finds a one-to-one transformation between ''n''-node trees with two distinguished nodes and maximal directed pseudoforests. A proof by double counting due to Jim Pitman counts in two different ways the number of different sequences of directed edges that can be added to an empty graph on n vertices to form from it a rooted tree; see . History The formula was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor's Theorem
In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with n elements has a total of 2^n subsets, and the theorem holds because 2^n > n for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for German mathematician Georg Cantor, who first stated and proved it at the end of the 19th century. Cantor's theorem had immedia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Burnside's Lemma
Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, the orbit-counting theorem, or the Lemma that is not Burnside's, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. Its various eponyms are based on William Burnside, George Pólya, Augustin Louis Cauchy, and Ferdinand Georg Frobenius. The result is not due to Burnside himself, who merely quotes it in his book 'On the Theory of Groups of Finite Order', attributing it instead to . Burnside's Lemma counts "orbits", which is the same thing as counting distinct objects taking account of a symmetry. Other ways of saying it are counting distinct objects up to an equivalence relation ''R'', or counting objects that are in canonical form. In the following, let ''G'' be a finite group that acts on a set ''X''. For each ''g'' in ''G'', let ''Xg'' denote the set of elements in ''X'' that are fixed by ''g'' (also said to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]