HOME





List Of Fallacies
A fallacy is the use of invalid or otherwise faulty reasoning in the construction of an argument. All forms of human communication can contain fallacies. Because of their variety, fallacies are challenging to classify. They can be classified by their structure (formal fallacies) or content (informal fallacies). Informal fallacies, the larger group, may then be subdivided into categories such as improper presumption, faulty generalization, error in assigning causation, and relevance, among others. The use of fallacies is common when the speaker's goal of achieving common agreement is more important to them than utilizing sound reasoning. When fallacies are used, the premise should be recognized as not well-grounded, the conclusion as unproven (but not necessarily false), and the argument as unsound. Formal fallacies A formal fallacy is an error in the argument's form. All formal fallacies are types of . * Appeal to probability – taking something for granted because it wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fallacy Of Four Terms
The fallacy of four terms () is the formal fallacy that occurs when a syllogism has four (or more) terms rather than the requisite three, rendering it invalid. Definition Categorical syllogisms always have three terms: :Major premise: Weapons are dangerous. :Minor premise: Knives are weapons. :Conclusion: Knives are dangerous. Here, the three terms are: "weapon", "dangerous", and "knife". Using four terms invalidates the syllogism: :Major premise: Weapons are dangerous. :Minor premise: Balloons are round. :Conclusion: Balloons are dangerous. Notice that there are four terms: "weapon", "dangerous", "balloon", and "round". The two premises do not connect "balloons" with "dangerous", so the reasoning is invalid. Two premises are not enough to connect four different terms, since in order to establish connection, there must be one term common to both premises. In everyday reasoning, the fallacy of four terms occurs most frequently by equivocation: using the same word or p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fallacy Of Exclusive Premises
The fallacy of exclusive premises is a syllogistic fallacy committed in a categorical syllogism that is invalid because both of its premises are negative.Goodman, Michael F. First Logic. Lanham: U of America, 1993. Web. Example of an EOO-4 type invalid syllogism :E Proposition: No cats are dogs. :O Proposition: Some dogs are not pets. :O Proposition: Therefore, some pets are not cats. Explanation of Example 1: :This may seem like a logical conclusion, as it appears to be logically derived that if Some dogs are not pets, then surely some are pets, otherwise, the premise would have stated "No Dogs are pets", and if some pets are dogs, then not all pets can be cats, thus, some pets are not cats. But if this assumption is applied to the final statement then we have drawn the conclusion: some pets are cats. But this is not supported by either premise. Cats not being dogs, and the state of dogs as either pets or not, has nothing to do with whether cats are pets. Two negative premis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Syllogism
A syllogism (, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BC book '' Prior Analytics''), a deductive syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across. For example, knowing that all men are mortal (major premise), and that Socrates is a man (minor premise), we may validly conclude that Socrates is mortal. Syllogistic arguments are usually represented in a three-line form: All men are mortal. Socrates is a man. Therefore, Socrates is mortal.In antiquity, two rival syllogistic theories existed: Aristotelian syllogism and Stoic syllogism. From the Middle Ages onwards, ''categorical syllogism'' and ''syllogism'' were usually used interchangeably. This article is concern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Affirmative Conclusion From A Negative Premise
Affirmative conclusion from a negative premise (illicit negative) is a formal fallacy that is committed when a categorical syllogism has a positive conclusion and one or two negative premises. For example: :''No fish are dogs, and no dogs can fly, therefore all fish can fly.'' The only thing that can be properly inferred from these premises is that some things that are not fish cannot fly, provided that dogs exist. Or: :''We don't read that trash. People who read that trash don't appreciate real literature. Therefore, we appreciate real literature.'' This could be illustrated mathematically as :If A \cap B = \emptyset and B \cap C = \emptyset then A\subset C. It is a fallacy because any valid forms of categorical syllogism that assert a negative premise must have a negative conclusion. See also * Negative conclusion from affirmative premises, in which a syllogism A syllogism (, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Syllogisms
A syllogism (, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BC book '' Prior Analytics''), a deductive syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across. For example, knowing that all men are mortal (major premise), and that Socrates is a man (minor premise), we may validly conclude that Socrates is mortal. Syllogistic arguments are usually represented in a three-line form: All men are mortal. Socrates is a man. Therefore, Socrates is mortal.In antiquity, two rival syllogistic theories existed: Aristotelian syllogism and Stoic syllogism. From the Middle Ages onwards, ''categorical syllogism'' and ''syllogism'' were usually used interchangeably. This article is concerne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Fallacy
The existential fallacy, or existential instantiation, is a formal fallacy. In the existential fallacy, one presupposes that a class has members when one is not supposed to do so; i.e., when one should not assume existential import. Not to be confused with the 'Affirming the consequent', as in "If A, then B. B. Therefore A". One example would be: "''Every unicorn has a horn on its forehead''". It does not imply that there are any unicorns at all in the world, and thus it cannot be assumed that, if the statement were true, somewhere there is a unicorn in the world (with a horn on its forehead). The statement, if assumed true, implies only that if there were any unicorns, each would definitely have a horn on its forehead. Overview An existential fallacy is committed in a medieval categorical syllogism because it has two universal premises and a particular conclusion with no assumption that at least one member of the class exists, an assumption which is not established by the prem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantification (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first-order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The most commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic: each can be defined in terms of the other using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Denying The Antecedent
Denying the antecedent (also known as inverse error or fallacy of the inverse) is a formal fallacy of inferring the inverse from an original statement. Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form: :If ''P'', then ''Q''. :Not ''P''. :Therefore, not ''Q''. which may also be phrased as :P \rightarrow Q (P implies Q) :\therefore \neg P \rightarrow \neg Q (therefore, not-P implies not-Q) Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true. The name ''denying the antecedent'' derives from the premise "not ''P''", which denies the "if" clause (antecedent) of the conditional premise. The only situation where one may deny the an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called the consequent. In some contexts, the consequent is called the ''apodosis''.See Conditional sentence. Examples: * If P, then Q. Q is the consequent of this hypothetical proposition. * If X is a mammal, then X is an animal. Here, "X is an animal" is the consequent. * If computers can think, then they are alive. "They are alive" is the consequent. The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent. * If monkeys are purple, then fish speak Klingon. "Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple". See also * Antecedent (logic) * Conjecture * Necessity and s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]