Line Graph Of A Hypergraph
In graph theory, particularly in the theory of hypergraphs, the line graph of a hypergraph , denoted , is the graph whose vertex set is the set of the hyperedges of , with two vertices adjacent in when their corresponding hyperedges have a nonempty intersection in . In other words, is the intersection graph of a family of finite sets. It is a generalization of the line graph of a graph. Questions about line graphs of hypergraphs are often generalizations of questions about line graphs of graphs. For instance, a hypergraph whose edges all have size is called . (A 2-uniform hypergraph is a graph). In hypergraph theory, it is often natural to require that hypergraphs be . Every graph is the line graph of some hypergraph, but, given a fixed edge size , not every graph is a line graph of some hypergraph. A main problem is to characterize those that are, for each . A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Clique (graph Theory)
In graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics. Definiti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Nova Science Publishers, Inc
A nova ( novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", Latin for "new") that slowly fades over weeks or months. All observed novae involve white dwarfs in close binary systems, but causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars. Classical nova eruptions are the most common type. This type is usually created in a close binary star system consisting of a white dwarf and either a main sequence, subgiant, or red giant star. If the orbital period of the system is a few days or less, the white dwarf is close enough to its companion star to draw accreted matter onto its surface, creating a dense but shallow atmosphere. This atmosphere, mostly consisting of hydrogen, is heated by t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Graphs And Combinatorics
''Graphs and Combinatorics'' (ISSN 0911-0119, abbreviated ''Graphs Combin.'') is a peer-reviewed academic journal in graph theory, combinatorics, and discrete geometry published by Springer Japan. Its editor-in-chief is Katsuhiro Ota of Keio University. The journal was first published in 1985. Its founding editor in chief was Hoon Heng Teh of Singapore, the president of the Southeast Asian Mathematics Society, and its managing editor was Jin Akiyama. Originally, it was subtitled "An Asian Journal". In most years since 1999, it has been ranked as a second-quartile journal in discrete mathematics and theoretical computer science by SCImago Journal Rank The SCImago Journal Rank (SJR) indicator is a measure of the prestige of scholarly journals that accounts for both the number of citations received by a journal and the prestige of the journals where the citations come from. Etymology SCImago ..... References {{reflist Academic journals established in 1985 Combinatorics jo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact facto ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Clique (graph Theory)
In graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics. Definiti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Complement Graph
In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.. The complement is not the set complement of the graph; only the edges are complemented. Definition Let be a simple graph and let consist of all 2-element subsets of . Then is the complement of , where is the relative complement of in . For directed graphs, the complement can be defined in the same way, as a directed graph on the same vertex set, using the set of all 2-element ordered pairs of in place of the set in the formula above. In terms of the adjacency matrix ''A'' of the graph, if ''Q'' is the adjacency matrix of the complete graph of the same number of vertices (i.e. all entries ar ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Repeated Diamond Graph
A rerun or repeat is a rebroadcast of an episode of a radio or television program. The two types of reruns are those that occur during a hiatus and those that occur when a program is syndicated. Variations In the United Kingdom, the word "repeat" refers only to a single episode; "rerun" or "rerunning" is the preferred term for an entire series/season. A "repeat" is a single episode of a series that is broadcast outside its original timeslot on the same channel/network. The episode is usually the "repeat" of the scheduled episode that was broadcast in the original timeslot earlier the previous week. It allows viewers who were not able to watch the show in its timeslot to catch up before the next episode is broadcast. The term "rerun" can also be used in some respects as a synonym for "reprint", the equivalent term for print items; this is especially true for print items that are part of ongoing series such as comic strips. (''Peanuts'', for instance, has been in reruns since the re ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Diamond Graph
In the mathematical field of graph theory, the diamond graph is a planar, undirected graph with 4 vertices and 5 edges. It consists of a complete graph minus one edge. The diamond graph has radius 1, diameter 2, girth 3, chromatic number 3 and chromatic index 3. It is also a 2- vertex-connected and a 2- edge-connected, graceful, Hamiltonian graph. Diamond-free graphs and forbidden minor A graph is diamond-free if it has no diamond as an induced subgraph. The triangle-free graphs are diamond-free graphs, since every diamond contains a triangle. The diamond-free graphs are locally clustered: that is, they are the graphs in which every neighborhood is a cluster graph. Alternatively, a graph is diamond-free if and only if every pair of maximal cliques in the graph shares at most one vertex. The family of graphs in which each connected component is a cactus graph is downwardly closed under graph minor operations. This graph family may be characteriz ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Line Graph
In the mathematics, mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edge (graph theory), edges of . is constructed in the following way: for each edge in , make a vertex in ; for every two edges in that have a vertex in common, make an edge between their corresponding vertices in . The name ''line graph'' comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate, the representative graph, and the θ-obrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71. proved that with one exceptional case the structure of a connected graph can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Forbidden Induced Subgraph
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph and the complete bipartite graph . For Kuratowski's theorem, the notion of containment is that of graph homeomorphism, in which a subdivision of one graph appears as a subgraph of the other. Thus, every graph either has a planar drawing (in which case it belongs to the family of planar graphs) or it has a subdivision of at least one of these two graphs as a subgraph (in which case it does not belong to the planar graphs). Definition More generally, a forbidden g ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hypergraph
In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a directed hypergraph is a pair (X,E), where X is a set of elements called ''nodes'', ''vertices'', ''points'', or ''elements'' and E is a set of pairs of subsets of X. Each of these pairs (D,C)\in E is called an ''edge'' or ''hyperedge''; the vertex subset D is known as its ''tail'' or ''domain'', and C as its ''head'' or ''codomain''. The order of a hypergraph (X,E) is the number of vertices in X. The size of the hypergraph is the number of edges in E. The order of an edge e=(D,C) in a directed hypergraph is , e, = (, D, ,, C, ): that is, the number of vertices in its tail followed by the number of vertices in its head. The definition above generalizes from a directed graph to a directed hypergraph by defining the h ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |