HOME





Latin Rectangle
In combinatorial mathematics, a Latin rectangle is an matrix (where ), using symbols, usually the numbers or as its entries, with no number occurring more than once in any row or column. An Latin rectangle is called a Latin square. An example of a 3 × 5 Latin rectangle is: : Normalization A Latin rectangle is called ''normalized'' (or ''reduced'') if its first row is in natural order and so is its first column. The example above is not normalized. Enumeration Let () denote the number of normalized × Latin rectangles. Then the total number of × Latin rectangles is :\frac. A 2 × Latin rectangle corresponds to a permutation with no fixed points. Such permutations have been called ''discordant permutations''. An enumeration of permutations discordant with a given permutation is the famous problème des rencontres. The enumeration of permutations discordant with two permutations, one of which is a simple cyclic shift of the other, is known as the reduced problème ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Latin Square
In combinatorics and in experimental design, a Latin square is an ''n'' × ''n'' array filled with ''n'' different symbols, each occurring exactly once in each row and exactly once in each column. An example of a 3×3 Latin square is The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares. History The Korean mathematician Choi Seok-jeong was the first to publish an example of Latin squares of order nine, in order to construct a magic square in 1700, predating Leonhard Euler by 67 years. Reduced form A Latin square is said to be ''reduced'' (also, ''normalized'' or ''in standard form'') if both its first row and its first column are in their natural order. For example, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed Point (mathematics)
A fixed point (sometimes shortened to fixpoint, also known as an invariant point) is a value that does not change under a given transformation. Specifically, in mathematics, a fixed point of a function is an element that is mapped to itself by the function. In physics, the term fixed point can refer to a temperature that can be used as a reproducible reference point, usually defined by a phase change or triple point. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain and the codomain of , and . For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, , has no fixed points, since is never equal to for any real number. In graphical terms, a fixed point means the point is on the line , or in other words the graph of has a point in common with that line. Fixed-point iteration In numerical analysis, ''fixed-poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Problème Des Rencontres
In combinatorial mathematics, the rencontres numbers are a triangular array of integers that enumerate permutations of the set with specified numbers of fixed points: in other words, partial derangements. (''Rencontre'' is French for ''encounter''. By some accounts, the problem is named after a solitaire game.) For ''n'' ≥ 0 and 0 ≤ ''k'' ≤ ''n'', the rencontres number ''D''''n'', ''k'' is the number of permutations of that have exactly ''k'' fixed points. For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are ''D''7, 2 = 924 ways this could happen. Another often cited example is that of a dance school with 7 couples, where, after tea-break the participants are told to ''randomly'' find a partner to continue, then once more there are ''D''7, 2 = 924 possibilities that 2 previous couples meet again by chance. Numerical values Here is the be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Latin Square Property
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that they need not be associative and need not have an identity element. A quasigroup with an identity element is called a loop. Definitions There are at least two structurally equivalent formal definitions of quasigroup. One defines a quasigroup as a set with one binary operation, and the other, from universal algebra, defines a quasigroup as having three primitive operations. The homomorphic image of a quasigroup defined with a single binary operation, however, need not be a quasigroup. We begin with the first definition. Algebra A quasigroup is a non-empty set ''Q'' with a binary operation ∗ (that is, a magma, indicating that a quasigroup has to satisfy closure property), obeying the Latin square property. This states that, for each ''a'' and ''b'' in ''Q'', there exist uniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hall's Marriage Theorem
In mathematics, Hall's marriage theorem, proved by , is a theorem with two equivalent formulations: * The combinatorial formulation deals with a collection of finite sets. It gives a necessary and sufficient condition for being able to select a distinct element from each set. * The graph theoretic formulation deals with a bipartite graph. It gives a necessary and sufficient condition for finding a matching that covers at least one side of the graph. Combinatorial formulation Statement Let \mathcal F be a family of finite sets. Here, \mathcal F is itself allowed to be infinite (although the sets in it are not) and to contain the same set multiple times. Let X be the union of all the sets in \mathcal F, the set of elements that belong to at least one of its sets. A transversal for F is a subset of X that can be obtained by choosing a distinct element from each set in \mathcal F. This concept can be formalized by defining a transversal to be the image of an injective function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample to the population as a whole. An ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Design Of Experiments
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation. In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Design
Combinatorial design theory is the part of combinatorial mathematics that deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of ''balance'' and/or ''symmetry''. These concepts are not made precise so that a wide range of objects can be thought of as being under the same umbrella. At times this might involve the numerical sizes of set intersections as in block designs, while at other times it could involve the spatial arrangement of entries in an array as in sudoku grids. Combinatorial design theory can be applied to the area of design of experiments. Some of the basic theory of combinatorial designs originated in the statistician Ronald Fisher's work on the design of biological experiments. Modern applications are also found in a wide gamut of areas including finite geometry, tournament scheduling, lotteries, mathematical chemistry, mathematical biology, algorithm design and analysis, networking, g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]