Kallman–Rota Inequality
   HOME
*





Kallman–Rota Inequality
In mathematics, the Kallman–Rota inequality, introduced by , is a generalization of the Landau–Kolmogorov inequality to Banach spaces. It states that if ''A'' is the infinitesimal generator of a one-parameter contraction semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', ... then : \, Af\, ^2 \le 4\, f\, \, A^2f\, . References *. {{DEFAULTSORT:Kallman-Rota inequality Inequalities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Landau–Kolmogorov Inequality
In mathematics, the Landau–Kolmogorov inequality, named after Edmund Landau and Andrey Kolmogorov, is the following family of interpolation inequalities between different derivatives of a function ''f'' defined on a subset ''T'' of the real numbers: : \, f^\, _ \le C(n, k, T) ^ ^ \text 1\le k < n.


On the real line

For ''k'' = 1, ''n'' = 2 and ''T'' = [''c'',∞) or ''T'' = R, the inequality was first proved by Edmund Landau with the sharp constants ''C''(2, 1, [''c'',∞)) = 2 and ''C''(2, 1, R) = √2. Following contributions by Jacques Hadamard and Georgiy Shilov, Andrey Kolmogorov found the sharp constants and arbitrary ''n'', ''k'': : C(n, k, \mathbb R) = a_ a_n^~, where ''a''''n'' are the Favard constants.


On the half-line

Following work by Matorin and others, the extremising functions were found by
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Spaces
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term " Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings ( Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contraction (operator Theory)
In operator theory, a bounded operator ''T'': ''X'' → ''Y'' between normed vector spaces ''X'' and ''Y'' is said to be a contraction if its operator norm , , ''T'' , ,  ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias. Contractions on a Hilbert space If ''T'' is a contraction acting on a Hilbert space \mathcal, the following basic objects associated with ''T'' can be defined. The defect operators of ''T'' are the operators ''DT'' = (1 − ''T*T'')½ and ''DT*'' = (1 − ''TT*'')½. The square root is the positive semidefinite one given by the spectral theorem. The defect spaces \mathcal_T and \mathcal_ are the cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]