Kryo
Qualcomm Kryo is a series of custom or semi-custom ARM-based CPUs included in the Snapdragon line of SoCs. These CPUs implement the ARM 64-bit instruction set and serve as the successor to the previous 32-bit Krait CPUs. It was first introduced in the Snapdragon 820 (2015). In 2017 Qualcomm released the Snapdragon 636 and Snapdragon 660, the first mid-range Kryo SoCs. In 2018 the first entry-level SoC with Kryo architecture, the Snapdragon 632, was released. Kryo (original) First announced in September 2015 and used in the Snapdragon 820 SoC. The original Kryo cores can be used in both parts of the big.LITTLE configuration, where two dual-core clusters (in the case of Snapdragon 820 and 821) run at different clock frequency, similar to how both Cortex-A53 clusters work in the Snapdragon 615. The Kryo in the 820/821 is an in-house custom ARMv8.0-A (AArch64/AArch32) design and not based on an ARM Cortex design. * 820: 2x Kryo Performance @ 2.15 GHz + 2x Kryo Efficien ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Snapdragon 820
The Qualcomm Snapdragon suite of systems on chips (SoCs) are designed for use in smartphones, tablets, laptops, 2-in-1 PCs, smartwatches, and smartbooks devices. Before Snapdragon SoC made by Qualcomm before it was renamed to Snapdragon. *MSM (Mobile Station Modem) *QSC (Qualcomm Single Chip) Snapdragon S series Snapdragon S1 Snapdragon S2 Snapdragon S3 Snapdragon S4 Snapdragon S4 was offered in three models: S4 Play for budget and entry-level devices, S4 Plus for mid-range devices and S4 Pro for high-end devices. It was launched in 2012. The Snapdragon S4 were succeeded by the Snapdragon 200/400 series (S4 Play) and 600/800 series (S4 Plus and S4 Pro). Snapdragon S4 Play Snapdragon S4 Plus Snapdragon S4 Pro and S4 Prime (2012) Snapdragon 2 series The Snapdragon 2 series is the entry-level SoC designed for low-end or ultra-budget smartphones. It replaces the MSM8225 S4 Play model as the lowest-end SoC in the ent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kryo
Qualcomm Kryo is a series of custom or semi-custom ARM-based CPUs included in the Snapdragon line of SoCs. These CPUs implement the ARM 64-bit instruction set and serve as the successor to the previous 32-bit Krait CPUs. It was first introduced in the Snapdragon 820 (2015). In 2017 Qualcomm released the Snapdragon 636 and Snapdragon 660, the first mid-range Kryo SoCs. In 2018 the first entry-level SoC with Kryo architecture, the Snapdragon 632, was released. Kryo (original) First announced in September 2015 and used in the Snapdragon 820 SoC. The original Kryo cores can be used in both parts of the big.LITTLE configuration, where two dual-core clusters (in the case of Snapdragon 820 and 821) run at different clock frequency, similar to how both Cortex-A53 clusters work in the Snapdragon 615. The Kryo in the 820/821 is an in-house custom ARMv8.0-A (AArch64/AArch32) design and not based on an ARM Cortex design. * 820: 2x Kryo Performance @ 2.15 GHz + 2x Kryo Efficien ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Cortex-A55
The ARM Cortex-A55 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Cambridge design centre. The Cortex-A55 is a 2-wide decode in-order superscalar pipeline. Design The Cortex-A55 serves as the successor of the ARM Cortex-A53, designed to improve performance and energy efficiency over the A53. ARM has stated the A55 should have 15% improved power efficiency and 18% increased performance relative to the A53. Memory access and branch prediction are also improved relative to the A53. The Cortex-A75 and Cortex-A55 cores are the first products to support ARM's DynamIQ technology. The successor to big.LITTLE, this technology is designed to be more flexible and scalable when designing multi-core products. Licensing The Cortex-A55 is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores (e.g. GPU, display controller, DSP, image processor, etc.) into one die constitutin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Cortex-A73
The ARM Cortex-A73 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Sophia design centre. The Cortex-A73 is a 2-wide decode out-of-order superscalar pipeline. The Cortex-A73 serves as the successor of the Cortex-A72, designed to offer 30% greater performance or 30% increased power efficiency. Design The design of the Cortex-A73 is based on the 32-bit ARMv7-A Cortex-A17, emphasizing power efficiency and sustained peak performance. The Cortex-A73 is primarily targeted at mobile computing. In reviews, the Cortex-A73 showed improved integer instructions per clock (IPC), though lower floating point IPC, relative to the Cortex-A72. Licensing The Cortex-A73 is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores (e.g. GPU, display controller, DSP, image processor, etc.) into one die constituting a system on a chip (SoC). The Cortex-A73 is also the first ARM core to be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Cortex-A77
The ARM Cortex-A77 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre. Released in 2019, ARM claimed an increase of 23% and 35% in integer and floating point performance and 15% higher memory bandwidth over its predecessor, the A76. Design The Cortex-A77 serves as the successor of the Cortex-A76. The Cortex-A77 is a 4-wide decode out-of-order superscalar design with a new 1.5K macro-OP (MOPs) cache. It can fetch 4 instructions and 6 Mops per cycle. And rename and dispatch 6 Mops, and 13 μops per cycle. The out-of-order window size has been increased to 160 entries. The backend is 12 execution ports with a 50% increase over Cortex-A76. It has a pipeline depth of 13 stages and the execution latencies of 10 stages. There are six pipelines in the integer cluster – an increase of two additional integer pipelines from Cortex-A76. One of the changes from Cortex-A76 is the unification of the issue queues. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cortex-A73
The ARM Cortex-A73 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Sophia Antipolis, Sophia design centre. The Cortex-A73 is a 2-wide decode out-of-order execution, out-of-order superscalar pipeline. The Cortex-A73 serves as the successor of the Cortex-A72, designed to offer 30% greater performance or 30% increased power efficiency. Design The design of the Cortex-A73 is based on the 32-bit ARMv7-A ARM Cortex-A17, Cortex-A17, emphasizing power efficiency and sustained peak performance. The Cortex-A73 is primarily targeted at mobile computing. In reviews, the Cortex-A73 showed improved integer instructions per clock, instructions per clock (IPC), though lower floating point IPC, relative to the Cortex-A72. Licensing The Cortex-A73 is available as Semiconductor intellectual property core, SIP core to licensees, and its design makes it suitable for integration with other SIP cores (e.g. Graphics processing unit, GPU, display cont ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Cortex-A75
The ARM Cortex-A75 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings's Sophia design centre. The Cortex-A75 is a 3-wide decode out-of-order superscalar pipeline. The Cortex-A75 serves as the successor of the Cortex-A73, designed to improve performance by 20% over the A73 in mobile applications while maintaining the same efficiency. Design According to ARM, the A75 is expected to offer 16–48% better performance than an A73 and is targeted beyond mobile workloads. The A75 also features an increased TDP envelope of 2 W, enabling increased performance. The Cortex-A75 and Cortex-A55 cores are the first products to support ARM's DynamIQ technology. The successor to big.LITTLE, this technology is designed to be more flexible and scalable when designing multi-core products. Licensing The Cortex-A75 is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores (e.g. GPU, di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Cortex-A53
The ARM Cortex-A53 is one of the first two central processing units implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Cambridge design centre, along with the Cortex-A57. The Cortex-A53 is a 2-wide decode superscalar processor, capable of dual-issuing some instructions. It was announced October 30, 2012 and is marketed by ARM as either a stand-alone, more energy-efficient alternative to the more powerful Cortex-A57 microarchitecture, or to be used alongside a more powerful microarchitecture in a big.LITTLE configuration. It is available as an IP core to licensees, like other ARM intellectual property and processor designs. Overview * 8-stage pipelined processor with 2-way superscalar, in-order execution pipeline * DSP and NEON SIMD extensions are mandatory per core * VFPv4 Floating Point Unit onboard (per core) * Hardware virtualization support * TrustZone security extensions * 64-byte cache lines * 10-entry L1 TLB, and 512-entry L2 TLB * 4KiB c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Cortex-A76
The ARM Cortex-A76 is a central processing unit (CPU) core implementing the 64-bit ARMv8.2-A architecture, designed by Arm Holdings' design center in Austin, Texas. Compared to its predecessor, the Cortex-A75, ARM claimed performance improvements of up to 25% in integer operations and 35% in floating-point operations. Design The Cortex-A76 is a successor to both the Cortex-A73 and Cortex-A75, though it is based on an entirely new microarchitecture. It features a 4-wide decode, out-of-order, superscalar pipeline. The frontend can fetch and decode four instructions per cycle and dispatch up to four macro-operations and eight micro-operations per cycle. The out-of-order execution window includes 128 entries. The backend includes eight execution ports, with a pipeline depth of 13 stages and execution latencies of 11 stages. The Cortex-A76 supports unprivileged 32-bit applications, but privileged software, such as operating systems and kernels, must use the 64-bit ARMv8-A instruc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Architecture
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced instruction set computer, RISC instruction set architectures (ISAs) for central processing unit, computer processors. Arm Holdings develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses semiconductor intellectual property core, cores that implement these ISAs. Due to their low costs, low power consumption, and low heat generation, ARM processors are useful for light, portable, battery-powered devices, including smartphones, laptops, and tablet computers, as well as embedded systems. However, ARM processors are also used for desktop computer, desktops and server (computing), servers, including Fugaku (supercomputer), Fugaku, the world's fastest supercomputer from 2020 to 2022. With over 230 billion ARM chips produced, , ARM is the most widely used ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARMv8
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of RISC instruction set architectures (ISAs) for computer processors. Arm Holdings develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses cores that implement these ISAs. Due to their low costs, low power consumption, and low heat generation, ARM processors are useful for light, portable, battery-powered devices, including smartphones, laptops, and tablet computers, as well as embedded systems. However, ARM processors are also used for desktops and servers, including Fugaku, the world's fastest supercomputer from 2020 to 2022. With over 230 billion ARM chips produced, , ARM is the most widely used family of instruction set architectures. There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure but had ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Krait (CPU)
Qualcomm Krait is an ARM-based central processing unit included in the Snapdragon S4 and earlier models of Snapdragon 400/600/800 series SoCs. It was introduced in 2012 as a successor to the Scorpion CPU and although it has architectural similarities, Krait is not a Cortex-A15 core, but it was designed in-house. In 2015, Krait was superseded by the 64-bit Kryo architecture, first introduced in Snapdragon 820 SoC. Overview * 11-stage integer pipeline with 3-way decode and 4-way out-of-order speculative issue superscalar execution * Pipelined VFPv4 and 128-bit wide NEON (SIMD) * 7 execution ports * 4 KB + 4 KB direct mapped L0 cache * 16 KB + 16 KB 4-way set associative L1 cache * 1 MB (dual-core) or 2 MB (quad-core) 8-way set-associative L2 cache * Dual- or quad-core configurations * Performance (DMIPS/MHz): ** Krait 200: 3.3 (28 nm LP) ** Krait 300: 3.39 (28 nm LP) ** Krait 400: 3.39 (28 nm HPm) ** Krait 450: 3.51 (28 nm HPm) See also * Scorpion (CPU ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |