Jacobi Transform
In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta on the interval 1,1/math>. The ... P_n^(x) as kernels of the transform . The Jacobi transform of a function F(x) isDebnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014. :J\ = f^(n) = \int_^1 (1-x)^\alpha\ (1+x)^\beta \ P_n^(x)\ F(x) \ dx The inverse Jacobi transform is given by :J^\ = F(x) = \sum_^\infty \frac f^(n) P_n^(x), \quad \text \quad \delta_n =\frac Some Jacobi transform pairs References Integral transforms Mathematical physics {{math-physics-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carl Gustav Jacob Jacobi
Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasionally written as Carolus Gustavus Iacobus Iacobi in his Latin books, and his first name is sometimes given as Karl. Jacobi was the first Jewish mathematician to be appointed professor at a German university. Biography Jacobi was born of Ashkenazi Jewish parentage in Potsdam on 10 December 1804. He was the second of four children of banker Simon Jacobi. His elder brother Moritz von Jacobi would also become known later as an engineer and physicist. He was initially home schooled by his uncle Lehman, who instructed him in the classical languages and elements of mathematics. In 1816, the twelve-year-old Jacobi went to the Potsdam Gymnasium, where students were taught all the standard subjects: classical languages, history, philology, mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi Polynomials
In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta on the interval 1,1/math>. The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The definition is in IV.1; the differential equation – in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. Definitions Via the hypergeometric function The Jacobi polynomials are defined via the hypergeometric function as follows: :P_n^(z)=\frac\,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac(1-z)\right), where (\alpha+1)_n is Pochhammer's symbol (for the rising factorial). In this case, the series for the hypergeometric function is finite, therefore one obtains the follow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Transforms
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |