Inner Model
   HOME
*





Inner Model
In set theory, a branch of mathematical logic, an inner model for a theory ''T'' is a substructure of a model ''M'' of a set theory that is both a model for ''T'' and contains all the ordinals of ''M''. Definition Let L = \langle \in \rangle be the language of set theory. Let ''S'' be a particular set theory, for example the ZFC axioms and let ''T'' (possibly the same as ''S'') also be a theory in L. If ''M'' is a model for ''S'', and ''N'' is an L-structure such that #''N'' is a substructure of ''M'', i.e. the interpretation \in_N of \in in ''N'' is \cap N^2 #''N'' is a model for ''T'' #the domain of ''N'' is a transitive class of ''M'' #''N'' contains all ordinals of ''M'' then we say that ''N'' is an inner model of ''T'' (in ''M''). Usually ''T'' will equal (or subsume) ''S'', so that ''N'' is a model for ''S'' 'inside' the model ''M'' of ''S''. If only conditions 1 and 2 hold, ''N'' is called a standard model of ''T'' (in ''M''), a standard submodel of ''T'' (if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistency Strength
In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory ''T''. Instead we usually take a theory ''S'', believed to be consistent, and try to prove the weaker statement that if ''S'' is consistent then ''T'' must also be consistent—if we can do this we say that ''T'' is ''consistent relative to S''. If ''S'' is also consistent relative to ''T'' then we say that ''S'' and ''T'' are equiconsistent. Consistency In mathematical logic, formal theories are studied as mathematical objects. Since some theories are powerful enough to model different mathematical objects, it is natural to wonder about their own consistency. Hilbert proposed a program at the beginning of the 20th century whose ultimate goal was to show, using mathematical method ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inner Model Theory
In set theory, inner model theory is the study of certain models of ZFC or some fragment or strengthening thereof. Ordinarily these models are transitive subsets or subclasses of the von Neumann universe ''V'', or sometimes of a generic extension of ''V''. Inner model theory studies the relationships of these models to determinacy, large cardinals, and descriptive set theory. Despite the name, it is considered more a branch of set theory than of model theory. Examples *The class of all sets is an inner model containing all other inner models. *The first non-trivial example of an inner model was the constructible universe ''L'' developed by Kurt Gödel. Every model ''M'' of ZF has an inner model ''L''M satisfying the axiom of constructibility, and this will be the smallest inner model of ''M'' containing all the ordinals of ''M''. Regardless of the properties of the original model, ''L''''M'' will satisfy the generalized continuum hypothesis and combinatorial axioms such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What is can be thought of as being built in "stages" resembling the const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Continuum Hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' the continuum'' for the real numbers. History Cantor believed the continuum hypothesis to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kripke–Platek Set Theory
The Kripke–Platek set theory (KP), pronounced , is an axiomatic set theory developed by Saul Kripke and Richard Platek. The theory can be thought of as roughly the predicative part of ZFC and is considerably weaker than it. Axioms In its formulation, a Δ0 formula is one all of whose quantifiers are bounded. This means any quantification is the form \forall u \in v or \exist u \in v. (See the Lévy hierarchy.) * Axiom of extensionality: Two sets are the same if and only if they have the same elements. * Axiom of induction: φ(''a'') being a formula, if for all sets ''x'' the assumption that φ(''y'') holds for all elements ''y'' of ''x'' entails that φ(''x'') holds, then φ(''x'') holds for all sets ''x''. * Axiom of empty set: There exists a set with no members, called the empty set and denoted . * Axiom of pairing: If ''x'', ''y'' are sets, then so is , a set containing ''x'' and ''y'' as its only elements. * Axiom of union: For any set ''x'', there is a set ''y'' s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subtheories
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins by specifying a definite non-empty ''conceptual class'' \mathcal, the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivision of all of its subsets into large and small sets such that itself is large, and all singletons are small, complements of small sets are large and vice versa. The intersection of fewer than large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of ''κ''. (Here the term ''κ-additive'' means that, for any sequence ''A''''α'', α<λ of cardinality ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mostowski Collapse
In mathematical logic, the Mostowski collapse lemma, also known as the Shepherdson–Mostowski collapse, is a theorem of set theory introduced by and . Statement Suppose that ''R'' is a binary relation on a class ''X'' such that *''R'' is set-like: ''R''−1 'x''= is a set for every ''x'', *''R'' is well-founded: every nonempty subset ''S'' of ''X'' contains an ''R''-minimal element (i.e. an element ''x'' ∈ ''S'' such that ''R''−1 'x''∩ ''S'' is empty), *''R'' is extensional: ''R''−1 'x''≠ ''R''−1 'y''for every distinct elements ''x'' and ''y'' of ''X'' The Mostowski collapse lemma states that for every such ''R'' there exists a unique transitive class (possibly proper) whose structure under the membership relation is isomorphic to (''X'', ''R''), and the isomorphism is unique. The isomorphism maps each element ''x'' of ''X'' to the set of images of elements ''y'' of ''X'' such that ''y R x'' (Jech 2003:69). Generalizations Every well-founded set-like relatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]