HOME
*





Indeterminate System
In mathematics, particularly in algebra, an indeterminate system is a system of simultaneous equations (e.g., linear equations) which has more than one solution (sometimes infinitely many solutions). In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply an infinite number of solutions (since the system would be describable in terms of at least one free variable), but that property does not extend to nonlinear systems (e.g., the system with the equation x^2=1 ). An indeterminate system by definition is consistent, in the sense of having at least one solution. For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate. Examples T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coefficient Matrix
In linear algebra, a coefficient matrix is a matrix consisting of the coefficients of the variables in a set of linear equations. The matrix is used in solving systems of linear equations. Coefficient matrix In general, a system with ''m'' linear equations and ''n'' unknowns can be written as : \begin a_ x_1 + a_ x_2 + \cdots + a_ x_n &= b_1 \\ a_ x_1 + a_ x_2 + \cdots + a_ x_n &= b_2 \\ &\;\; \vdots \\ a_ x_1 + a_ x_2 + \cdots + a_ x_n &= b_m \end where x_1, x_2, \ldots, x_n are the unknowns and the numbers a_, a_, \ldots, a_ are the coefficients of the system. The coefficient matrix is the ''m'' × ''n'' matrix with the coefficient a_ as the (''i'', ''j'')th entry: : \begin a_ & a_ & \cdots & a_ \\ a_ & a_ &\cdots & a_ \\ \vdots & \vdots & \ddots & \vdots \\ a_ & a_ & \cdots & a_ \end Then the above set of equations can be expressed more succinctly as : A\mathbf = \mathbf where ''A'' is the coefficient matrix and b is the column vector of constant terms. Rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Equation
An independent equation is an equation in a system of simultaneous equations which cannot be derived algebraically from the other equations. The concept typically arises in the context of linear equations. If it is possible to duplicate one of the equations in a system by multiplying each of the other equations by some number (potentially a different number for each equation) and summing the resulting equations, then that equation is dependent on the others. But if this is not possible, then that equation is independent of the others. If an equation is independent of the other equations in its system, then it provides information beyond that which is provided by the other equations. In contrast, if an equation is dependent on the others, then it provides no information not contained in the others collectively, and the equation can be dropped from the system without any information loss. The number of independent equations in a system equals the rank of the augmented matrix ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simultaneous Equations
In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single equations, namely as a: * System of linear equations, * System of nonlinear equations, * System of bilinear equations, * System of polynomial equations, * System of differential equations, or a * System of difference equations See also * Simultaneous equations model, a statistical model in the form of simultaneous linear equations * Elementary algebra Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entail ..., for elementary methods {{set index article Equations Broad-concept articles de:Gleichung#Gleichungssysteme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indeterminate (variable)
In mathematics, particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else except itself. It may be used as a placeholder in objects such as polynomials and formal power series. In particular: * It does not designate a constant or a parameter of the problem. * It is not an unknown that could be solved for. * It is not a variable designating a function argument, or a variable being summed or integrated over. * It is not any type of bound variable. * It is just a symbol used in an entirely formal way. When used as placeholders, a common operation is to substitute mathematical expressions (of an appropriate type) for the indeterminates. By a common abuse of language, mathematical texts may not clearly distinguish indeterminates from ordinary variables. Polynomials A polynomial in an indeterminate X is an expression of the form a_0 + a_1X + a_2X^2 + \ldots + a_nX^n, where the ''a_i'' are called the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Indeterminate Form
In calculus and other branches of mathematical analysis, limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits; if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form. More specifically, an indeterminate form is a mathematical expression involving at most two of 0~, 1 or \infty, obtained by applying the algebraic limit theorem in the process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity, and thus does not determine the limit being sought. A limit confirmed to be infinity is not indeterminate since it has been determined to have a specific value (infinity). The term was originally introduced by Cauchy's student Moigno in the middle of the 19th century. There are seven indeterminate forms which are typically c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indeterminate Equation
In mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. For example, the equation ax + by =c is a simple indeterminate equation, as is x^2=1. Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. Some of the prominent examples of indeterminate equations include: Univariate polynomial equation: :a_nx^n+a_x^+\dots +a_2x^2+a_1x+a_0 = 0, which has multiple solutions for the variable x in the complex plane—unless it can be rewritten in the form a_n(x-b)^n = 0. Non-degenerate conic equation: :Ax^2 + Bxy + Cy^2 +Dx + Ey + F = 0, where at least one of the given parameters A, B, and C is non-zero, and x and y are real variables. Pell's equation: :\ x^2 - Py^2 = 1, where P is a given integer that is not a square number, and in which the variables x and y are required to be integers. The equation of Pythagorean triples: :x^2+y^2=z^2, in which the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Row And Column Vectors
In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, consisting of a single row of n entries, \boldsymbol a = \begin a_1 & a_2 & \dots & a_n \end. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: \begin x_1 \; x_2 \; \dots \; x_m \end^ = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end and \begin x_1 \\ x_2 \\ \vdots \\ x_m \end^ = \begin x_1 \; x_2 \; \dots \; x_m \end. The set of all row vectors with ''n'' entries in a given field (such as the real numbers) forms an ''n''-dimensional vector space; similarly, the set of all column vectors with ''m'' entries forms an ''m''-dimensional vector space. The space of row vectors with ''n'' entries can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Augmented Matrix
In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices, usually for the purpose of performing the same elementary row operations on each of the given matrices. Given the matrices and , where A = \begin 1 & 3 & 2 \\ 2 & 0 & 1 \\ 5 & 2 & 2 \end , \quad B = \begin 4 \\ 3 \\ 1 \end, the augmented matrix (''A'', ''B'') is written as (A, B) = \left begin 1 & 3 & 2 & 4 \\ 2 & 0 & 1 & 3 \\ 5 & 2 & 2 & 1 \end\right This is useful when solving systems of linear equations. For a given number of unknowns, the number of solutions to a system of linear equations depends only on the rank of the matrix representing the system and the rank of the corresponding augmented matrix. Specifically, according to the Rouché–Capelli theorem, any system of linear equations is inconsistent (has no solutions) if the rank of the augmented matrix is greater than the rank of the coefficient matrix; if, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]