HOME





Isotopes Of Polonium
There are 42 isotopes of polonium (84Po). They range in size from 186 to 227 nucleons. They are all radioactive. 210Po with a half-life of 138.376 days has the longest half-life of any naturally-occurring isotope of polonium and is the most common isotope of polonium. It is also the most easily synthesized polonium isotope. 209Po, which does not occur naturally, has the longest half-life of all isotopes of polonium at 124 years. 209Po can be made by using a cyclotron to bombard bismuth with protons, as can 208Po. List of isotopes , -id=Polonium-186 , 186Po , , style="text-align:right" , 84 , style="text-align:right" , 102 , 186.004403(20) , , α , 182Pb , 0+ , , -id=Polonium-187 , 187Po , , style="text-align:right" , 84 , style="text-align:right" , 103 , 187.003030(40) , 1.40(25) ms , α , 183Pb , 1/2−, 5/2− , , -id=Polonium-187m , style="text-indent:1em" , 187mPo , , colspan="3" style="text-indent:2em" , 4(27) keV , 0.5 ms , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polonium
Polonium is a chemical element; it has symbol Po and atomic number 84. A rare and highly radioactive metal (although sometimes classified as a metalloid) with no stable isotopes, polonium is a chalcogen and chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 (with a half-life of 138 days) in uranium ores, as it is the penultimate daughter of natural uranium-238. Though two longer-lived isotopes exist (polonium-209 with a half-life of 124 years and polonium-208 with a half-life of 2.898 years), they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uranium-235
Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years. It was discovered in 1935 by Arthur Jeffrey Dempster. Its fission cross section for slow thermal neutrons is about Barn (unit), barns. For fast neutrons it is on the order of 1 barn. Most neutron absorptions induce fission, though a minority (about 15%) result in the formation of uranium-236. Fission properties The fission of one atom of uranium-235 releases () inside the reactor. That corresponds to 19.54 TJ/mole (unit), mol, or 83.14 TJ/kg.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotopes Of Polonium
There are 42 isotopes of polonium (84Po). They range in size from 186 to 227 nucleons. They are all radioactive. 210Po with a half-life of 138.376 days has the longest half-life of any naturally-occurring isotope of polonium and is the most common isotope of polonium. It is also the most easily synthesized polonium isotope. 209Po, which does not occur naturally, has the longest half-life of all isotopes of polonium at 124 years. 209Po can be made by using a cyclotron to bombard bismuth with protons, as can 208Po. List of isotopes , -id=Polonium-186 , 186Po , , style="text-align:right" , 84 , style="text-align:right" , 102 , 186.004403(20) , , α , 182Pb , 0+ , , -id=Polonium-187 , 187Po , , style="text-align:right" , 84 , style="text-align:right" , 103 , 187.003030(40) , 1.40(25) ms , α , 183Pb , 1/2−, 5/2− , , -id=Polonium-187m , style="text-indent:1em" , 187mPo , , colspan="3" style="text-indent:2em" , 4(27) keV , 0.5 ms , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotopes Of Lead
Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series (or radium series), the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (See lead–lead dating and uranium–lead dating.) The longest-liv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isotopes Of Bismuth
Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as . Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occur in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state. List of isotopes , -id=Bismuth-184 , 184B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotopes Of Astatine
Astatine (85At) has 41 known isotopes, all of which are radioactive; their mass numbers range from 188 to 229 (though 189At is undiscovered). There are also 24 known metastable excited states. The longest-lived isotope is 210At, which has a half-life of 8.1 hours; the longest-lived isotope existing in naturally occurring decay chains is 219At with a half-life of 56 seconds. List of isotopes , -id=Astatine-188 , rowspan=2, 188At , rowspan=2 style="text-align:right" , 85 , rowspan=2 style="text-align:right" , 103 , rowspan=2, , rowspan=2, , α (~50%) , 184Bi , rowspan=2, , rowspan=2, , - , p (~50%) , 187Po , -id=Astatine-190 , 190At , style="text-align:right" , 85 , style="text-align:right" , 105 , , , α , 186Bi , (10−) , , -id=Astatine-191 , 191At , style="text-align:right" , 85 , style="text-align:right" , 106 , , , α , 187Bi , (1/2+) , , -id=Astatine-191m , style="text-indent:1em" , 191mAt , colspan="3" style="text-indent:2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisoning Of Alexander Litvinenko
Alexander Litvinenko was an officer of the Russian Federal Security Service (FSB) and its predecessor, the KGB, until he left the service and fled the country in late 2000. In 1998, Litvinenko and several other Russian intelligence officers said they had been ordered to kill Boris Berezovsky, a Russian businessman. After that, the Russian government began to persecute Litvinenko. He fled to the UK, where he criticised the Russian President Vladimir Putin and the Russian government. In exile, Litvinenko worked with British and Spanish intelligence, sharing information about the Russian mafia in Europe and its connections with the Russian government. On 1 November 2006, Litvinenko was poisoned and later hospitalised. He died on 23 November, becoming the first confirmed victim of lethal polonium-210-induced acute radiation syndrome. Litvinenko's allegations about misdeeds of the FSB and his public deathbed accusations that Putin was behind his poisoning resulted in worldwide med ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neptunium-237
Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be synthesized and identified was 239Np in 1940, produced by bombarding with neutrons to produce , which then underwent beta decay to . Trace quantities are found in nature from neutron capture reactions by uranium atoms, a fact not discovered until 1951. Twenty-five neptunium radioisotopes have been characterized, with the most stable being with a half-life of 2.14 million years, with a half-life of 154,000 years, and with a half-life of 396.1 days. All of the remaining radioactive isotopes have half-lives that are less than 4.5 days, and the majority of these have half-lives that are less than 50 minutes. This element also has five meta states, with the most stable being (t1/2 22.5 hours). The isotopes of neptunium range from to , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thorium-232
Thorium-232 () is the main naturally occurring isotope of thorium, with a relative abundance of 99.98%. It has a half life of 14.05 billion years, which makes it the longest-lived isotope of thorium. It decays by alpha decay to radium-228; its decay chain terminates at stable lead-208. Thorium-232 is a fertile material; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233, which is fissile. As such, it has been used in the thorium fuel cycle in nuclear reactors; various prototype thorium-fueled reactors have been designed. However, as of 2024, thorium fuel has not been widely adopted for commercial-scale nuclear power. Natural occurrence The half-life of thorium-232 (14 billion years) is more than three times the age of the Earth; thorium-232 therefore occurs in nature as a primordial nuclide. Other thorium isotopes occur in nature in much smaller quantities as intermediate products in the decay chains of uranium ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uranium-238
Uranium-238 ( or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is ''fertile'', meaning it can be transmuted to fissile plutonium-239. 238U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of 238U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control. Around 99.284% of natural uranium's mass is uranium-238, which has a half-life of 1.41 seconds (4.468 years, or 4.468 billion years). Due to its natural abundance and half-life relative to other radioactive elements, 238U produces ~40% of the radioactive heat produced wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radioactivity
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered ''radioactive''. Three of the most common types of decay are Alpha decay, alpha, Beta decay, beta, and Gamma ray, gamma decay. The weak force is the Fundamental interactions, mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic force, electromagnetic and nuclear forces. Radioactive decay is a randomness, random process at the level of single atoms. According to quantum mechanics, quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life. The half-lives of radioactive atoms have a huge range: f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decay Product
In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( decay chain). For example, 238U decays to 234Th which decays to 234mPa which decays, and so on, to 206Pb (which is stable): : \ce \overbrace^\ce left, upThe decay chain from lead-212 down to lead-208, showing the intermediate decay products In this example: * 234Th, 234mPa,...,206Pb are the decay products of 238U. * 234Th is the daughter of the parent 238U. * 234mPa (234 metastable) is the granddaughter of 238U. These might also be referred to as the daughter products of 238U.Glossary of Volume 7
(''Depleted Uranium'' — authors: Naomi H. Harley, Ernest C. Foulkes, Lee H. Hilb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]