Infinite Expression
In mathematics, an infinite expression is an expression in which some operators take an infinite number of arguments, or in which the nesting of the operators continues to an infinite depth. A generic concept for infinite expression can lead to ill-defined or self-inconsistent constructions (much like a set of all sets), but there are several instances of infinite expressions that are well-defined. Examples Examples of well-defined infinite expressions are * infinite sums, such as :: \sum_^\infty a_n = a_0 + a_1 + a_2 + \cdots \, * infinite products, such as :: \prod_^\infty b_n = b_0 \times b_1 \times b_2 \times \cdots * infinite nested radicals, such as :: \sqrt * infinite power towers, such as :: \sqrt^ * infinite continued fractions, such as :: c_0 + \underset \frac = c_0 + \cfrac, : where the left hand side uses Gauss's Kettenbruch notation. In infinitary logic, one can use infinite conjunctions and infinite disjunctions. Even for well-defined infinite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinitary Logic
An infinitary logic is a logic that allows infinitely long statements and/or infinitely long proofs. The concept was introduced by Zermelo in the 1930s. Some infinitary logics may have different properties from those of standard first-order logic. In particular, infinitary logics may fail to be compact or complete. Notions of compactness and completeness that are equivalent in finitary logic sometimes are not so in infinitary logics. Therefore for infinitary logics, notions of strong compactness and strong completeness are defined. This article addresses Hilbert-type infinitary logics, as these have been extensively studied and constitute the most straightforward extensions of finitary logic. These are not, however, the only infinitary logics that have been formulated or studied. Considering whether a certain infinitary logic named Ω-logic is complete promises to throw light on the continuum hypothesis. A word on notation and the axiom of choice As a language with infin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Omega Language
In formal language theory within theoretical computer science, an infinite word is an infinite-length sequence (specifically, an ω-length sequence) of symbols, and an ω-language is a set of infinite words. Here, ω refers to the first infinite ordinal number, modeling a set of natural numbers. Formal definition Let Σ be a set of symbols (not necessarily finite). Following the standard definition from formal language theory, Σ* is the set of all ''finite'' words over Σ. Every finite word has a length, which is a natural number. Given a word ''w'' of length ''n'', ''w'' can be viewed as a function from the set → Σ, with the value at ''i'' giving the symbol at position ''i''. The infinite words, or ω-words, can likewise be viewed as functions from \mathbb to Σ. The set of all infinite words over Σ is denoted Σω. The set of all finite ''and'' infinite words over Σ is sometimes written Σ∞ or Σ≤ω. Thus an ω-language ''L'' over Σ is a subset of Σω. Operations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Compositions Of Analytic Functions
In mathematics, infinite Function composition, compositions of analytic functions (ICAF) offer alternative formulations of Generalized continued fraction, analytic continued fractions, series (mathematics), series, product (mathematics), products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence (mathematics), convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point (mathematics), fixed point equations involving infinite expansions. Complex dynamics offers another venue for iterated function system, iteration of systems of functions rather than a single function. For infinite compositions of a ''single function'' see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system. Although the title of this article specifies ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a constant called the ''center'' of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center ''c'' is equal to zero, for instance for Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decimal Expansion
A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator, is a nonnegative integer, and b_0, \cdots, b_k, a_1, a_2,\cdots are ''digits'', which are symbols representing integers in the range 0, ..., 9. Commonly, b_k\neq 0 if k \geq 1. The sequence of the a_i—the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0. If all a_i are , the separator is also omitted, resulting in a finite sequence of digits, which represents a natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in .... The decimal representation represents the infinite su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Word
In formal language theory within theoretical computer science, an infinite word is an infinite-length sequence (specifically, an ω-length sequence) of symbols, and an ω-language is a set of infinite words. Here, ω refers to the first infinite ordinal number, modeling a set of natural numbers. Formal definition Let Σ be a set of symbols (not necessarily finite). Following the standard definition from formal language theory, Σ* is the set of all ''finite'' words over Σ. Every finite word has a length, which is a natural number. Given a word ''w'' of length ''n'', ''w'' can be viewed as a function from the set → Σ, with the value at ''i'' giving the symbol at position ''i''. The infinite words, or ω-words, can likewise be viewed as functions from \mathbb to Σ. The set of all infinite words over Σ is denoted Σω. The set of all finite ''and'' infinite words over Σ is sometimes written Σ∞ or Σ≤ω. Thus an ω-language ''L'' over Σ is a subset of Σω. Operations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iterated Binary Operation
In mathematics, an iterated binary operation is an extension of a binary operation on a set ''S'' to a function on finite sequences of elements of ''S'' through repeated application. Common examples include the extension of the addition operation to the summation operation, and the extension of the multiplication operation to the product operation. Other operations, e.g., the set-theoretic operations union and intersection, are also often iterated, but the iterations are not given separate names. In print, summation and product are represented by special symbols; but other iterated operators often are denoted by larger variants of the symbol for the ordinary binary operator. Thus, the iterations of the four operations mentioned above are denoted :\sum,\ \prod,\ \bigcup, and \bigcap, respectively. More generally, iteration of a binary function is generally denoted by a slash: iteration of f over the sequence (a_, a_ \ldots, a_) is denoted by f / (a_, a_ \ldots, a_), following t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Convergence
In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said to converge absolutely if \textstyle\sum_^\infty \left, a_n\ = L for some real number \textstyle L. Similarly, an improper integral of a function, \textstyle\int_0^\infty f(x)\,dx, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if \textstyle\int_0^\infty , f(x), dx = L. A convergent series that is not absolutely convergent is called conditionally convergent. Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally converge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Conjunction
In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or \times or \cdot in which \wedge is the most modern and widely used. The ''and'' of a set of operands is true if and only if ''all'' of its operands are true, i.e., A \land B is true if and only if A is true and B is true. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English language, English "Conjunction (grammar), and"; * In programming languages, the Short-circuit evaluation, short-circuit and Control flow, control structure; * In set theory, Intersection (set theory), intersection. * In Lattice (order), lattice theory, logical conjunction (Infimum and supremum, greatest lower bound). Notati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Continued Fraction
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite. Different fields of mathematics have different terminology and notation for continued fraction. In number theory the standard unqualified use of the term continued fraction refers to the special case where all numerators are 1, and is treated in the article simple continued fraction. The present article treats the case where numerators and denominators are sequences \,\ of constants or functions. From the perspective of number theory, these are called generalized continued fraction. From the perspective of complex analysis or numerical analysis, however, they are just standard, and in the present article they will simply be called "continued fraction". Formulation A continued fraction is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |