HOME
*



picture info

Homothetic Center
In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another. If the center is ''external'', the two figures are directly similar to one another; their angles have the same rotational sense. If the center is ''internal'', the two figures are scaled mirror images of one another; their angles have the opposite sense. General polygons If two geometric figures possess a homothetic center, they are similar to one another; in other words, they must have the same angles at corresponding points and differ only in their relative scaling. The homothetic center and the two figures need not lie in the same plane; they can be related by a projection from the homothetic center. Homothetic centers may be external or internal. If the center is internal, the two geometric figures are scaled mirror images of one another; in technical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homothetic Transformation
In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point ''S'' called its ''center'' and a nonzero number ''k'' called its ''ratio'', which sends point X to a point X' by the rule : \overrightarrow=k\overrightarrow for a fixed number k\ne 0. Using position vectors: :\mathbf x'=\mathbf s + k(\mathbf x -\mathbf s). In case of S=O (Origin): :\mathbf x'=k\mathbf x, which is a uniform scaling and shows the meaning of special choices for k: :for k=1 one gets the ''identity'' mapping, :for k=-1 one gets the ''reflection'' at the center, For 1/k one gets the ''inverse'' mapping defined by k. In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if k>0) or reverse (if k<0) the direction of all vectors. Together with the translations, all homotheties of an affine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Two Circles Anti-homologous Points Radical Axis
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures. Evolution Arabic digit The digit used in the modern Western world to represent the number 2 traces its roots back to the Indic Brahmic script, where "2" was written as two horizontal lines. The modern Chinese and Japanese languages (and Korean Hanja) still use this method. The Gupta script rotated the two lines 45 degrees, making them diagonal. The top line was sometimes also shortened and had its bottom end curve towards the center of the bottom line. In the Nagari script, the top line was written more like a curve connecting to the bottom line. In the Arabic Ghubar writing, the bottom line was completely vertical, and the digit looked like a dotless closing question mark. Restoring the bottom line to its original horizontal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radius
In classical geometry, a radius (plural, : radii) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the spoke of a chariot wheel.Definition of Radius
at dictionary.reference.com. Accessed on 2009-08-08.
The plural of radius can be either ''radii'' (from the Latin plural) or the conventional English plural ''radiuses''. The typical abbreviation and variable (mathematics), mathematical variable name for radius is R or r. By extension, the diameter D is defined as twice the radius:Definition of radius
at mathw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isosceles
In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids. The mathematical study of isosceles triangles dates back to ancient Egyptian mathematics and Babylonian mathematics. Isosceles triangles have been used as decoration from even earlier times, and appear frequently in architecture and design, for instance in the pediments and gables of buildings. The two equal sides are called the legs and the third side is called the base of the triangle. The other dimensions of the triangle, such as its height, area, and perimeter, can be calculated by simple formulas from the lengths of the legs an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Two Circles Tangent Homothetic Center
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures. Evolution Arabic digit The digit used in the modern Western world to represent the number 2 traces its roots back to the Indic Brahmic script, where "2" was written as two horizontal lines. The modern Chinese and Japanese languages (and Korean Hanja) still use this method. The Gupta script rotated the two lines 45 degrees, making them diagonal. The top line was sometimes also shortened and had its bottom end curve towards the center of the bottom line. In the Nagari script, the top line was written more like a curve connecting to the bottom line. In the Arabic Ghubar writing, the bottom line was completely vertical, and the digit looked like a dotless closing question mark. Restoring the bottom line to its original horizontal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Center (geometry)
In geometry, the power center of three circles, also called the radical center, is the intersection point of the three radical axes of the pairs of circles. If the radical center lies outside of all three circles, then it is the center of the unique circle (the radical circle) that intersects the three given circles orthogonally; the construction of this orthogonal circle corresponds to Monge's problem. This is a special case of ththree conics theorem The three radical axes meet in a single point, the radical center, for the following reason. The radical axis of a pair of circles is defined as the set of points that have equal power ''h'' with respect to both circles. For example, for every point P on the radical axis of circles 1 and 2, the powers to each circle are equal, ''h''1 = ''h''2. Similarly, for every point on the radical axis of circles 2 and 3, the powers must be equal, ''h''2 = ''h''3. Therefore, at the intersection point of these two li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of A Point
In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power \Pi(P) of a point P with respect to a circle c with center O and radius r is defined by : \Pi(P)=, PO, ^2 - r^2. If P is ''outside'' the circle, then \Pi(P)>0, if P is ''on'' the circle, then \Pi(P)=0 and if P is ''inside'' the circle, then \Pi(P)<0. Due to the the number \Pi(P) has the simple geometric meanings shown in the diagram: For a point P outside the circle \Pi(P) is the squared tangential distance , PT, of point P to the circle c. Points with equal power,

picture info

Radical Axis
In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles. In detail: For two circles with centers and radii the powers of a point with respect to the circles are :\Pi_1(P)=, PM_1, ^2 - r_1^2,\qquad \Pi_2(P)= , PM_2, ^2 - r_2^2. Point belongs to the radical axis, if : \Pi_1(P)=\Pi_2(P). If the circles have two points in common, the radical axis is the common secant line of the circles. If point is outside the circles, has equal tangential distance to both the circles. If the radii are equal, the radical axis is the line segment bisector of . In any case the radical axis is a line perpendicular to \overline. ;On notations The notation ''radical axis'' was used by the French mathematician M. Chasles as ''axe radical''. J.V. Poncelet used . J. Plücker introduced the term . J. Stein ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersecting Chords Theorem
The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's ''Elements''. More precisely, for two chords ''AC'' and ''BD'' intersecting in a point ''S'' the following equation holds: :, AS, \cdot, SC, =, BS, \cdot, SD, The converse is true as well, that is if for two line segments ''AC'' and ''BD'' intersecting in S the equation above holds true, then their four endpoints ''A'', ''B'', ''C'' and ''D'' lie on a common circle. Or in other words if the diagonals of a quadrilateral ''ABCD'' intersect in ''S'' and fulfill the equation above then it is a cyclic quadrilateral In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Secant Theorem
In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power \Pi(P) of a point P with respect to a circle c with center O and radius r is defined by : \Pi(P)=, PO, ^2 - r^2. If P is ''outside'' the circle, then \Pi(P)>0, if P is ''on'' the circle, then \Pi(P)=0 and if P is ''inside'' the circle, then \Pi(P)<0. Due to the the number \Pi(P) has the simple geometric meanings shown in the diagram: For a point P outside the circle \Pi(P) is the squared tangential distance , PT, of point P to the circle c. Points with equal power,

picture info

Cyclic Quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus. The section characterizations below states w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrilateral
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple (not self-intersecting), or complex (self-intersecting, or crossed). Simple quadrilaterals are either convex or concave. The interior angles of a simple (and planar) quadrilateral ''ABCD'' add up to 360 degrees of arc, that is :\angle A+\angle B+\angle C+\angle D=360^. This is a special case of the ''n''-gon interior angle sum formula: ''S'' = (''n'' − 2) × 180°. All non-self-crossing quadrilaterals tile the plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]