HOME
*





Hall Word
In mathematics, in the areas of group theory and combinatorics, Hall words provide a unique monoid factorisation of the free monoid. They are also totally ordered, and thus provide a total order on the monoid. This is analogous to the better-known case of Lyndon words; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are binary trees; taken together, they form the Hall set. This set is a particular totally ordered subset of a free non-associative algebra, that is, a free magma. In this form, the Hall trees provide a basis for free Lie algebras, and can be used to perform the commutations required by the Poincaré–Birkhoff–Witt theorem used in the construction of a universal enveloping algebra. As such, this generalizes the same process when done with the Lyndon words. Hall trees can also be used to give a total order to the elements of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded Lie Algebra
In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operation. A choice of Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic Lie algebra is also a graded Lie algebra. A graded Lie superalgebra extends the notion of a graded Lie algebra in such a way that the Lie bracket is no longer assumed to be necessarily anticommutative. These arise in the study of derivations on graded algebras, in the deformation theory of Murray Gerstenhaber, Kunihiko Kodaira, and Donald C. Spencer, and in the theory of Lie derivatives. A supergraded Lie superalgebra is a further generalization of this notion to the category of superalgebras in which a graded Lie superalgebra is endowed with an additional super \Z/2\Z-gradation. These arise when one form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Confluence (abstract Rewriting)
In computer science, confluence is a property of rewriting systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an abstract rewriting system. Motivating examples The usual rules of elementary arithmetic form an abstract rewriting system. For example, the expression (11 + 9) × (2 + 4) can be evaluated starting either at the left or at the right parentheses; however, in both cases the same result is eventually obtained. If every arithmetic expression evaluates to the same result regardless of reduction strategy, the arithmetic rewriting system is said to be ground-confluent. Arithmetic rewriting systems may be confluent or only ground-confluent depending on details of the rewriting system. A second, more abstract example is obtained from the following proof of each group element equalling the inverse of its inverse: This proof starts from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Term Rewriting System
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several theorem provers and declarative programming languages are based on term rewriting. Example cases Logic In logic, the procedure for obtaining the conjunctive normal form (CNF) of a formula can be implemented as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleene Star
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V is written as ''V^*''. It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions". # If V is a set of strings, then ''V^*'' is defined as the smallest superset of V that contains the empty string \varepsilon and is closed under the string concatenation operation. # If V is a set of symbols or characters, then ''V^*'' is the set of all strings over symbols in V, including the empty string \varepsilon. The set ''V^*'' can also be described as the set containing the empty string and all finite-length strings that can be generated by concatenating arbitrary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chen–Fox–Lyndon Theorem
In mathematics, a factorisation of a free monoid is a sequence of subsets of words with the property that every word in the free monoid can be written as a concatenation of elements drawn from the subsets. The Chen–Fox–Lyndon theorem states that the Lyndon words furnish a factorisation. The Schützenberger theorem relates the definition in terms of a multiplicative property to an additive property. Let ''A''* be the free monoid on an alphabet ''A''. Let ''X''''i'' be a sequence of subsets of ''A''* indexed by a totally ordered index set ''I''. A factorisation of a word ''w'' in ''A''* is an expression :w = x_ x_ \cdots x_ \ with x_ \in X_ and i_1 \ge i_2 \ge \ldots \ge i_n. Some authors reverse the order of the inequalities. Chen–Fox–Lyndon theorem A Lyndon word over a totally ordered alphabet ''A'' is a word that is lexicographically less than all its rotations.Lothaire (1997) p.64 The Chen–Fox–Lyndon theorem states that every string may be formed in a unique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirichlet Convolution
In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet. Definition If f , g : \mathbb\to\mathbb are two arithmetic functions from the positive integers to the complex numbers, the ''Dirichlet convolution'' is a new arithmetic function defined by: : (f*g)(n) \ =\ \sum_ f(d)\,g\!\left(\frac\right) \ =\ \sum_\!f(a)\,g(b) where the sum extends over all positive divisors ''d'' of ''n'', or equivalently over all distinct pairs of positive integers whose product is ''n''. This product occurs naturally in the study of Dirichlet series such as the Riemann zeta function. It describes the multiplication of two Dirichlet series in terms of their coefficients: :\left(\sum_\frac\right) \left(\sum_\frac\right) \ = \ \left(\sum_\frac\right). Properties The set of arithmetic functions forms a commutative ring, the , under pointwise addition, where is defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Function
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted . Definition For any positive integer , define as the sum of the primitive th roots of unity. It has values in depending on the factorization of into prime factors: * if is a square-free positive integer with an even number of prime factors. * if is a square-free positive integer with an odd number of prime factors. * if has a squared prime factor. The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where is the Kronecker delta, is the Liouville function, is the number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Necklace Polynomial
In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by , counts the number of distinct necklaces of ''n'' colored beads chosen out of α available colors. The necklaces are assumed to be aperiodic (not consisting of repeated subsequences), and counted up to rotation (rotating the beads around the necklace counts as the same necklace), but without flipping over (reversing the order of the beads counts as a different necklace). This counting function also describes, among other things, the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field. Definition The necklace polynomials are a family of polynomials M(\alpha,n) in the variable \alpha such that :\alpha^n \ =\ \sum_ d \, M(\alpha, d). By Möbius inversion they are given by : M(\alpha,n) \ =\ \sum_\mu\!\left(\right)\alpha^d, where \mu is the classic Möbius function. A closely related family, called the general necklace polyno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ernst Witt
Ernst Witt (26 June 1911 – 3 July 1991) was a German mathematician, one of the leading algebraists of his time. Biography Witt was born on the island of Alsen, then a part of the German Empire. Shortly after his birth, his parents moved the family to China to work as missionaries, and he did not return to Europe until he was nine. After his schooling, Witt went to the University of Freiburg and the University of Göttingen. He joined the NSDAP (Nazi Party) and was an active party member. Witt was awarded a Ph.D. at the University of Göttingen in 1934 with a thesis titled: "Riemann-Roch theorem and zeta-Function in hypercomplexes" (Riemann-Rochscher Satz und Zeta-Funktion im Hyperkomplexen) that was supervised by Gustav Herglotz with Emmy Noether suggesting the top for the doctorate. He qualified to become a lecturer and gave guest lectures in Göttingen and Hamburg. He became associated with the team led by Helmut Hasse who led his habilitation. In June 1936 gave his habil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the '' commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]