Haar Wavelet
   HOME
*





Haar Wavelet
In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and extensively used as a teaching example. The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval  , 1 The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1. The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Haar Wavelet
In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and extensively used as a teaching example. The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval  , 1 The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1. The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonality
In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in other fields including art and chemistry. Etymology The word comes from the Ancient Greek ('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and Classical Latin ' originally denoted a rectangle. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle. Mathematics Physics * In optics, polarization states are said to be orthogonal when they propagate independently of each other, as in vertical and horizontal linear polarization or right- and left-handed circular polarization. * In special relativity, a time axis determined by a rapidity of motion is hyperbolic-orthogonal to a space axis o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independence (probability Theory)
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rademacher System
Rademacher is an occupational surname of German origin, which means "wheelmaker". It may refer to: People * Arthur Rademacher (1889–1981), Australian football player * Autumn Rademacher (born 1975), American basketball coach * Bill Rademacher (born 1942), American football player *Debbie Rademacher (born 1966), American soccer player *Erich Rademacher (1901–1979), German swimmer * Franz Rademacher (1906–1973), German diplomat *Hans Rademacher (1892–1969), German-born American mathematician *Ingo Rademacher (born 1971), Australian actor * Isaac Rademacher (born 1977), American soldier *Joachim Rademacher (1906–1970), German water polo player *Joseph Rademacher (bishop) (1840–1900), American bishop * Joseph Rademacher (soldier) (born 1985), American soldier * Mark Rademacher (1963–1983), American soldier *Pete Rademacher (1928-2020), American boxer * Rudolf Rademacher (1913–1953), German pilot Other uses *House of Rademacher, German noble family *Rademacher (band) *Ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Raymond Paley
Raymond Edward Alan Christopher Paley (7 January 1907 – 7 April 1933) was an English mathematician who made significant contributions to mathematical analysis before dying young in a skiing accident. Life Paley was born in Bournemouth, England, the son of an artillery officer who died of tuberculosis before Paley was born. He was educated at Eton College as a King's Scholar and at Trinity College, Cambridge. He became a wrangler in 1928, and with J. A. Todd, he was one of two winners of the 1930 Smith's Prize examination. He was elected a Research Fellow of Trinity College in 1930, edging out Todd for the position, and continued at Cambridge as a postgraduate student, advised by John Edensor Littlewood. After the 1931 return of G. H. Hardy to Cambridge he participated in weekly joint seminars with the other students of Hardy and Littlewood. He traveled to the US in 1932 to work with Norbert Wiener at the Massachusetts Institute of Technology and with George Pólya at P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joram Lindenstrauss
Joram Lindenstrauss ( he, יורם לינדנשטראוס) (October 28, 1936 – April 29, 2012) was an Israeli mathematician working in functional analysis. He was a professor of mathematics at the Einstein Institute of Mathematics. Biography Joram Lindenstrauss was born in Tel Aviv. He was the only child of a pair of lawyers who immigrated to Israel from Berlin. He began to study mathematics at the Hebrew University of Jerusalem in 1954 while serving in the army. He became a full-time student in 1956 and received his master's degree in 1959. In 1962 Lindenstrauss earned his Ph.D. from the Hebrew University (dissertation: ''Extension of Compact Operators'', advisors: Aryeh Dvoretzky, Branko Grünbaum). He worked as a postdoc at Yale University and the University of Washington in Seattle from 1962 - 1965. He was appointed senior lecturer at the Hebrew University in 1965, associate professor on 1967 and full professor in 1969. He became the Leon H. and Ada G. Miller Memoria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schauder Basis
In mathematics, a Schauder basis or countable basis is similar to the usual ( Hamel) basis of a vector space; the difference is that Hamel bases use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. This makes Schauder bases more suitable for the analysis of infinite-dimensional topological vector spaces including Banach spaces. Schauder bases were described by Juliusz Schauder in 1927, although such bases were discussed earlier. For example, the Haar basis was given in 1909, and Georg Faber discussed in 1910 a basis for continuous functions on an interval, sometimes called a Faber–Schauder system.Faber, Georg (1910), "Über die Orthogonalfunktionen des Herrn Haar", ''Deutsche Math.-Ver'' (in German) 19: 104–112. ; http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN37721857X ; http://resolver.sub.uni-goettingen.de/purl?GDZPPN002122553 Definitions Let ''V'' denote a topological vector space over the field ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lexicographical Order
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements. Another variant, widely used in combinatorics, orders subsets of a given finite set by assigning a total order to the finite set, and converting subsets into increasing sequences, to which the lexicographical order is applied. A generalization defines an order on a Cartesian product of partially ordered sets; this order is a total order if and only if all factors of the Cartesian product are totally ordered. Motivation and definition The words in a lexicon (the set of words used in some language) have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Haar Wavelet 20080121 1
Haar may refer to: * Haar (fog), fog or sea mist (Scottish English) * Haar, Bavaria, a municipality near Munich, Germany * Haar (Westphalia), a hill range in North Rhine-Westphalia, Germany People with the surname * Alfréd Haar (1885–1933), Hungarian mathematician * Jarrod Haar, New Zealand organisational psychology academic See also * De Haar (other) * Haar wavelet, the first wavelet * Haar measure, a set-theoretic measure * Haar-like feature Haar-like features are digital image features used in object recognition. They owe their name to their intuitive similarity with Haar wavelets and were used in the first real-time face detector.Viola and Jones,Rapid object detection using a boost ...
, a technique in computer vision {{disambiguation, surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiresolution Analysis
A multiresolution analysis (MRA) or multiscale approximation (MSA) is the design method of most of the practically relevant discrete wavelet transforms (DWT) and the justification for the algorithm of the fast wavelet transform (FWT). It was introduced in this context in 1988/89 by Stephane Mallat and Yves Meyer and has predecessors in the microlocal analysis in the theory of differential equations (the ''ironing method'') and the pyramid methods of image processing as introduced in 1981/83 by Peter J. Burt, Edward H. Adelson anJames L. Crowley Definition A multiresolution analysis of the Lebesgue space L^2(\mathbb) consists of a sequence of nested subspaces ::\\dots\subset V_1\subset V_0\subset V_\subset\dots\subset V_\subset V_\subset\dots\subset L^2(\R) that satisfies certain self-similarity relations in time-space and scale-frequency, as well as completeness and regularity relations. * ''Self-similarity'' in ''time'' demands that each subspace ''Vk'' is invariant under sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Function
In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. This fact is called weak duality. In general, the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition. This fact is called strong duality. Dual problem Usually the term "dual problem" refers to the ''Lagrangian dual problem'' but other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]