Gödel–Dummett Logic
   HOME
*





Gödel–Dummett Logic
In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate logics (the logics are intermediate between intuitionistic logic and classical logic). Definition A superintuitionistic logic is a set ''L'' of propositional formulas in a countable set of variables ''p''''i'' satisfying the following properties: :1. all axioms of intuitionistic logic belong to ''L''; :2. if ''F'' and ''G'' are formulas such that ''F'' and ''F'' → ''G'' both belong to ''L'', then ''G'' also belongs to ''L'' (closure under modus ponens); :3. if ''F''(''p''1, ''p''2, ..., ''p''''n'') is a formula of ''L'', and ''G''1, ''G''2, ..., ''G''''n'' are any formulas, then ''F''(''G''1, ''G''2, ..., ''G''''n'') belongs to ''L'' (closure under substitution). Such a logic is intermediate if furthermore :4. ''L'' is not the set of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yuri T
Yuri may refer to: People and fictional characters Given name *Yuri (Slavic name), the Slavic masculine form of the given name George, including a list of people with the given name Yuri, Yury, etc. *Yuri (Japanese name), also Yūri, feminine Japanese given names, including a list of people and fictional characters *Yu-ri (Korean name), Korean unisex given name, including a list of people and fictional characters Singers * Yuri (Japanese singer), vocalist of the band Move *Yuri (Korean singer), member of Girl Friends *Yuri (Mexican singer) *Kwon Yu-ri, member of Girls' Generation Footballers *Yuri (footballer, born 1982), full name Yuri de Souza Fonseca, Brazilian football forward *Yuri (footballer, born 1984), full name Yuri Adriano Santos, Brazilian footballer * Yuri (footballer, born 1986), full name Yuri Vera Cruz Erbas, Brazilian footballer * Yuri (footballer, born 1989), full name Yuri Naves Roberto, Brazilian football defensive midfielder * Yuri (footballer, born 1990), fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kripke Frame
Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise'). Semantics of modal logic The language of propositional modal logic consists of a countably infinite set of propositional variables, a set of truth-functional connectives (in this article \to and \neg), and the modal operator \Box ("necessarily"). The modal operator \Diamond ("possibly") is (classically) the dual of \Box and may be defined in terms of necessity like so: \Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lindenbaum–Tarski Algebra
In mathematical logic, the Lindenbaum–Tarski algebra (or Lindenbaum algebra) of a logical theory ''T'' consists of the equivalence classes of sentences of the theory (i.e., the quotient, under the equivalence relation ~ defined such that ''p'' ~ ''q'' exactly when ''p'' and ''q'' are provably equivalent in ''T''). That is, two sentences are equivalent if the theory ''T'' proves that each implies the other. The Lindenbaum–Tarski algebra is thus the quotient algebra obtained by factoring the algebra of formulas by this congruence relation. The algebra is named for logicians Adolf Lindenbaum and Alfred Tarski. It was first introduced by Tarski in 1935 as a device to establish correspondence between classical propositional calculus and Boolean algebras. The Lindenbaum–Tarski algebra is considered the origin of the modern algebraic logic.; here: pages 1-2 Operations The operations in a Lindenbaum–Tarski algebra ''A'' are inherited from those in the underlying theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Propositional Formula
In propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as ''p'' and ''q'', using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: : (''p'' AND NOT ''q'') IMPLIES (''p'' OR ''q''). In mathematics, a propositional formula is often more briefly referred to as a "proposition", but, more precisely, a propositional formula is not a proposition but a formal expression that ''denotes'' a proposition, a formal object under discussion, just like an expression such as "" is not a value, but denotes a value. In some contexts, maintaining the distinction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by to formalize intuitionistic logic. As lattices, Heyting algebras are distributive. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be the supremum of the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atom (order Theory)
In the mathematical field of order theory, an element ''a'' of a partially ordered set with least element 0 is an atom if 0 < ''a'' and there is no ''x'' such that 0 < ''x'' < ''a''. Equivalently, one may define an atom to be an element that is minimal among the non-zero elements, or alternatively an element that covers the least element 0.


Atomic orderings

Let <: denote the in a partially ordered set. A partially ordered set with a least element 0 is atomic if every element ''b'' > 0 has an atom ''a'' below it, that is, there is some ''a'' such that ''b'' ≥ ''a'' :> ''0''. Every finite parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bottom Element
In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an element of S that is smaller than every other element of S. Definitions Let (P, \leq) be a preordered set and let S \subseteq P. An element g \in P is said to be if g \in S and if it also satisfies: :s \leq g for all s \in S. By using \,\geq\, instead of \,\leq\, in the above definition, the definition of a least element of S is obtained. Explicitly, an element l \in P is said to be if l \in S and if it also satisfies: :l \leq s for all s \in S. If (P, \leq) is even a partially ordered set then S can have at most one greatest element and it can have at most one least element. Whenever a greatest element of S exists and is unique then this element is called greatest element of S. The terminology least element of S is defined simil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Lattice
In mathematics, a complete lattice is a partially ordered set in which ''all'' subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a ''conditionally complete lattice.'' Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra. Complete lattices must not be confused with complete partial orders (''cpo''s), which constitute a strictly more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (''locales''). Formal definition A partially ordered set (''L'', ≤) is a ''complete lattice'' if every subset ''A'' of ''L'' has both a greatest lower bound (the infimum, also called the ''meet'') and a least upper bound (the supremum, also called the ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dana Scott
Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, California. His work on automata theory earned him the Turing Award in 1976, while his collaborative work with Christopher Strachey in the 1970s laid the foundations of modern approaches to the semantics of programming languages. He has worked also on modal logic, topology, and category theory. Early career He received his B.A. in Mathematics from the University of California, Berkeley, in 1954. He wrote his Ph.D. thesis on ''Convergent Sequences of Complete Theories'' under the supervision of Alonzo Church while at Princeton, and defended his thesis in 1958. Solomon Feferman (2005) writes of this period: After completing his Ph.D. studies, he moved to the University of Chicago, working as an instructor there until 1960. In 1959, he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]