HOME
*





Gordon Decomposition
In mathematical physics, the Gordon decomposition (named after Walter Gordon) of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation. Original statement For any solution \psi of the massive Dirac equation, : (i\gamma^\mu \nabla_\mu-m)\psi=0, the Lorentz covariant number-current j^\mu=\bar\psi \gamma^\mu\psi may be expressed as :\bar\psi \gamma^\mu\psi =\frac (\bar \psi \nabla^\mu\psi -(\nabla^\mu\bar \psi) \psi)+\frac \partial_\nu(\bar\psi \Sigma^\psi), where :\Sigma^ = \frac gamma^\mu,\gamma^\nu/math> is the spinor generator of Lorentz transformations, and :\bar\psi = \psi^\dagger \gamma^0 is the Dirac adjoint. The corresponding momentum-space version for plane wave solutions u(p) and \bar u(p') obeying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry and conserved quantities during the dynamical evol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Gordon (physicist)
Walter Gordon (13 August 1893 – 24 December 1939) was a German theoretical physicist. Life Walter Gordon was the son of businessman Arnold Gordon and his wife Bianca Gordon (''nee'' Brann). The family moved to Switzerland in his early years. In 1900 he attended school in St. Gallen and in 1915 he began his studies of mathematics and physics at University of Berlin. He received his doctoral degree in 1921 from Max Planck. In 1922, while still at the University of Berlin, Gordon became the assistant of Max von Laue. In 1925, he worked for some months in Manchester with William Lawrence Bragg and later, at the Kaiser Wilhelm Society for fiber chemistry in Berlin. In 1926, he moved to Hamburg, where he attained the habilitation in 1929. In 1930 he became a professor. He married a local Hamburg woman, Gertrud Lobbenberg, in 1932. He moved to Stockholm in 1933 because of the political situation in Germany. While at the university he worked on mechanics and mathematical physics. Not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, ''antimatter'', previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a ''theoretical'' justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin. The wave functions in the Dirac theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spinor
In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. Unlike vectors and tensors, a spinor transforms to its negative when the space is continuously rotated through a complete turn from 0° to 360° (see picture). This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms). It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Transformations
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz. The most common form of the transformation, parametrized by the real constant v, representing a velocity confined to the -direction, is expressed as \begin t' &= \gamma \left( t - \frac \right) \\ x' &= \gamma \left( x - v t \right)\\ y' &= y \\ z' &= z \end where and are the coordinates of an event in two frames with the origins coinciding at 0, where the primed frame is seen from the unprimed frame as moving with speed along the -axis, where is the speed of light, and \gamma = \left ( \sqrt\right )^ is the Lorentz factor. When speed is much smaller than , the Lorentz factor is negligibly different from 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Adjoint
In quantum field theory, the Dirac adjoint defines the dual operation of a Dirac spinor. The Dirac adjoint is motivated by the need to form well-behaved, measurable quantities out of Dirac spinors, replacing the usual role of the Hermitian adjoint. Possibly to avoid confusion with the usual Hermitian adjoint, some textbooks do not provide a name for the Dirac adjoint but simply call it "ψ-bar". Definition Let \psi be a Dirac spinor. Then its Dirac adjoint is defined as :\bar\psi \equiv \psi^\dagger \gamma^0 where \psi^\dagger denotes the Hermitian adjoint of the spinor \psi, and \gamma^0 is the time-like gamma matrix. Spinors under Lorentz transformations The Lorentz group of special relativity is not compact, therefore spinor representations of Lorentz transformations are generally not unitary. That is, if \lambda is a projective representation of some Lorentz transformation, :\psi \mapsto \lambda \psi, then, in general, :\lambda^\dagger \ne \lambda^. The He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirac Algebra
In mathematical physics, the Dirac algebra is the Clifford algebra \text_(\mathbb). This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-½ particles with a matrix representation of the gamma matrices, which represent the generators of the algebra. The gamma matrices are a set of four 4\times 4 matrices \ = \ with entries in \mathbb, that is, elements of \text_(\mathbb), satisfying :\displaystyle\ = \gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2 \eta^, where by convention, an identity matrix has been suppressed on the right-hand side. The numbers \eta^ \, are the components of the Minkowski metric. For this article we fix the signature to be ''mostly minus'', that is, (+,-,-,-). The Dirac algebra is then the linear span of the identity, the gamma matrices \gamma^\mu as well as any linearly independent products of the gamma matrices. This forms a finite-dimensional algebra over the field \mathbb or \mathbb, with di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, ''antimatter'', previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a ''theoretical'' justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin. The wave functions in the Dirac theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pauli Matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () when used in connection with isospin symmetries. \begin \sigma_1 = \sigma_\mathrm &= \begin 0&1\\ 1&0 \end \\ \sigma_2 = \sigma_\mathrm &= \begin 0& -i \\ i&0 \end \\ \sigma_3 = \sigma_\mathrm &= \begin 1&0\\ 0&-1 \end \\ \end These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation which takes into account the interaction of the spin of a particle with an external electromagnetic field. They also represent the interaction states of two polarization filters for horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left). Each Pauli matrix is Hermitian, and together with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gyromagnetic Ratio
In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol , gamma. Its SI unit is the radian per second per tesla (rad⋅s−1⋅T−1) or, equivalently, the coulomb per kilogram (C⋅kg−1). The term "gyromagnetic ratio" is often used as a synonym for a ''different'' but closely related quantity, the -factor. The -factor only differs from the gyromagnetic ratio in being dimensionless. For a classical rotating body Consider a nonconductive charged body rotating about an axis of symmetry. According to the laws of classical physics, it has both a magnetic dipole moment due to the movement of charge and an angular momentum due to the movement of mass arising from its rotation. It can be shown that as long as its charge and mass density and flow are distributed identically and rotationally symmetric, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Belinfante–Rosenfeld Stress–energy Tensor
In mathematical physics, the Belinfante– Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved. In a classical or quantum local field theory, the generator of Lorentz transformations can be written as an integral : M_ = \int \mathrm^3x \, _ of a local current : _= (x_\nu _\lambda - x_\lambda _\nu)+ _. Here _\lambda is the canonical Noether energy–momentum tensor, and _ is the contribution of the intrinsic (spin) angular momentum. Local conservation of angular momentum : \partial_\mu _=0 \, requires that : \partial_\mu _=T_-T_. Thus a source of spin-current implies a non-symmetric canonical energy–momentum tensor. The Belinfante–Rosenfeld tensor is a modification of the energy momentum tensor : T_B^ = T^ +\frac 12 \partial_\lambda(S^+S^-S^) that is constructed from the canonical energy momentum tensor and the spin curre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann–Silberstein Vector
In mathematical physics, in particular electromagnetism, the Riemann–Silberstein vector or Weber vector named after Bernhard Riemann, Heinrich Martin Weber and Ludwik Silberstein, (or sometimes ambiguously called the "electromagnetic field") is a complex vector that combines the electric field E and the magnetic field B. History Heinrich Martin Weber published the fourth edition of "The partial differential equations of mathematical physics according to Riemann's lectures" in two volumes (1900 and 1901). However, Weber pointed out in the preface of the first volume (1900) that this fourth edition was completely rewritten based on his own lectures, not Riemann's, and that the reference to "Riemann's lectures" only remained in the title because the overall concept remained the same and that he continued the work in Riemann's spirit. In the second volume (1901, §138, p. 348), Weber demonstrated how to consolidate Maxwell’s equations using \mathfrak + i\ \mathfrak. The real and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]