Formylation Reactions
   HOME
*



picture info

Formylation Reactions
In biochemistry, the addition of a formyl functional group is termed formylation. A formyl functional group consists of a carbonyl bonded to hydrogen. When attached to an Side chain, R group, a formyl group is called an aldehyde. Formylation has been identified in several critical biological processes. Methionine was first discovered to be formylated in ''E. coli'' by Marcker and Sanger in 1964 and was later identified to be involved in the initiation of protein synthesis in bacteria and organelles. The formation of N-formylmethionine, ''N''-formylmethionine is catalyzed by the enzyme Methionyl-tRNA formyltransferase, methionyl-tRNA transformylase. Additionally, two formylation reactions occur in the Purine biosynthesis, de novo biosynthesis of purines. These reactions are catalyzed by the enzymes GAR transformylase, glycinamide ribonucleotide (GAR) transformylase and AICAR transformylase, 5-aminoimidazole-4-carboxyamide ribotide (AICAR) transformylase. More recently, formylation h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formyl Functional Group
In organic chemistry, an aldehyde () is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are common and play important roles in the technology and biological spheres. Structure and bonding Aldehydes feature a carbon center that is connected by a double bond to oxygen and a single bond to hydrogen and single bond to a third substituent, which is carbon or, in the case of formaldehyde, hydrogen. The central carbon is often described as being sp2- hybridized. The aldehyde group is somewhat polar. The C=O bond length is about 120-122 picometers. Physical properties and characterization Aldehydes have properties that are diverse and that depend on the remainder of the molecule. Smaller aldehydes are more soluble in water, formaldehyde and acetaldehyde completely so. The volatile aldehydes have pungent odors. Aldehy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carbon Dioxide
Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. It is a trace gas in Earth's atmosphere at 421 parts per million (ppm), or about 0.04% by volume (as of May 2022), having risen from pre-industrial levels of 280 ppm. Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of climate change.IPCC (2022Summary for policy makersiClimate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA Carbon dioxide is soluble in water and is found in groundwater, lakes, ice ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GAR Transformylase Active Site With Folate Based Inhibitor
Gars are members of the family Lepisosteidae, which are the only surviving members of the Ginglymodi, an ancient holosteian group of ray-finned fish, which first appeared during the Triassic, over 240 million years ago. Gars comprise seven living species of fish in two genera that inhabit fresh, brackish, and occasionally marine waters of eastern North America, Central America and Cuba in the Caribbean, though extinct members of the family were more widespread. Gars have elongated bodies that are heavily armored with ganoid scales, and fronted by similarly elongated jaws filled with long, sharp teeth. Gars are sometimes referred to as "garpike", but are not closely related to pike, which are in the fish family Esocidae. All of the gars are relatively large fish, but the alligator gar (''Atractosteus spatula'') is the largest; the alligator gar often grows to a length over and a weight over , and specimens of up to in length have been reported. Unusually, their vascularised sw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inosine Monophosphate
Inosinic acid or inosine monophosphate (IMP) is a nucleotide (that is, a nucleoside monophosphate). Widely used as a flavor enhancer, it is typically obtained from chicken byproducts or other meat industry waste. Inosinic acid is important in metabolism. It is the ribonucleotide of hypoxanthine and the first nucleotide formed during the synthesis of purine nucleotides. It can also be formed by the deamination of adenosine monophosphate by AMP deaminase. It can be hydrolysed to inosine. The enzyme deoxyribonucleoside triphosphate pyrophosphohydrolase, encoded by YJR069C in ''Saccharomyces cerevisiae'' and containing (d)ITPase and (d)XTPase activities, hydrolyzes inosine triphosphate (ITP) releasing pyrophosphate and IMP. Important derivatives of inosinic acid include the purine nucleotides found in nucleic acids and adenosine triphosphate, which is used to store chemical energy in muscle and other tissues. In the food industry, inosinic acid and its salts such as disodium inosi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-formylmethionine Synthesis
''N''-Formylmethionine (fMet, HCO-Met, For-Met) is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally. fMet plays a crucial part in the protein synthesis of bacteria, mitochondria and chloroplasts. It is not used in cytosolic protein synthesis of eukaryotes, where eukaryotic nuclear genes are translated. It is also not used by Archaea. In the human body, fMet is recognized by the immune system as foreign material, or as an alarm signal released by damaged cells, and stimulates the body to fight against potential infection. Function in protein synthesis fMet is a starting residue in the synthesis of proteins in bacteria, and, consequently, is located at the ''N''-terminus of the growing polypeptide. fMet is delivered to the ribosome (30S) - mRNA complex by a specialized tRNA (tRNAfM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methionine Aminopeptidase
Methionyl aminopeptidase (, ''methionine aminopeptidase'', ''peptidase M'', ''L-methionine aminopeptidase'', ''MAP'') is an enzyme. This enzyme catalyses the following chemical reaction : Release of N-terminal amino acids, preferentially methionine, from peptides and arylamides This membrane-bound enzymatic activity is present in both prokaryotes and eukaryotes. Proteins possessing this activity include METAP1 and METAP2 Methionine aminopeptidase 2 is an enzyme that in humans is encoded by the ''METAP2'' gene. Methionine aminopeptidase 2, a member of the dimetallohydrolase family, is a cytosolic metalloenzyme that catalyzes the hydrolytic removal of N-terminal me .... References External links * {{Portal bar, Biology, border=no EC 3.4.11 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peptide Deformylase
In enzymology, a peptide deformylase () is an enzyme that catalyzes the chemical reaction :H2O + formyl-L-methionyl peptide \rightleftharpoons methionyl peptide + formate Thus, the two substrates of this enzyme are formyl-L-methionyl peptide and H2O, whereas its two products are formate and methionyl peptide. This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amides. The systematic name of this enzyme class is formyl-L-methionyl peptide amidohydrolase. Structural studies As of late 2007, 34 structures have been solved for this class of enzymes, with PDB accession codes , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . See also *Actinonin Actinonin is a naturally occurring antibacterial agent that has demonstrated anti-tumor activity. Actiononin has been shown to inhibit the enzyme peptide deformylase In enzymology, a peptide deformylase () is an enzyme that c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Initiation Factor
Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis. Initiation factors can interact with repressors to slow down or prevent translation. They have the ability to interact with activators to help them start or increase the rate of translation. In bacteria, they are simply called IFs (i.e.., IF1, IF2, & IF3) and in eukaryotes they are known as eIFs (i.e.., eIF1, eIF2, eIF3). Translation initiation is sometimes described as three step process by which initiation factors help to carry out. First, the tRNA carrying a methionine amino acid binds to the small ribosome, then binds to the mRNA, and finally joining together with the large ribosome. The initiation factors that help with this process each have different roles and structures. Types The initiation factors are divided into three major groups by taxonomic domains. There are some homologies shared (click the domain names to see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

30S Ribosomal Subunit
The prokaryotic small ribosomal subunit, or 30 S subunit, is the smaller subunit of the 70S ribosome found in prokaryotes. It is a complex of the 16S ribosomal RNA (rRNA) and 19 proteins. This complex is implicated in the binding of transfer RNA to messenger RNA (mRNA). The small subunit is responsible for the binding and the reading of the mRNA during translation. The small subunit, both the rRNA and its proteins, complexes with the large 50S subunit to form the 70S prokaryotic ribosome in prokaryotic cells. This 70S ribosome is then used to translate mRNA into proteins. Function The 30S subunit is an integral part of mRNA translation. It binds three prokaryotic initiation factors: IF-1, IF-2, and IF-3. A portion of the 30S subunit (the 16S rRNA) guides the initiating start codon (5′)-AUG-(3′) of mRNA into position by recognizing the Shine-Dalgarno sequence, a complementary binding site about 8 base pairs upstream from the start codon. This ensures the ribosome s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formyl-methionyl-tRNA
''N''-Formylmethionine (fMet, HCO-Met, For-Met) is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally. fMet plays a crucial part in the protein synthesis of bacteria, mitochondria and chloroplasts. It is not used in cytosolic protein synthesis of eukaryotes, where eukaryotic nuclear genes are translated. It is also not used by Archaea. In the human body, fMet is recognized by the immune system as foreign material, or as an alarm signal released by damaged cells, and stimulates the body to fight against potential infection. Function in protein synthesis fMet is a starting residue in the synthesis of proteins in bacteria, and, consequently, is located at the ''N''-terminus of the growing polypeptide. fMet is delivered to the ribosome (30S) - mRNA complex by a specialized tRNA (tRNAfM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]