First And Second Fundamental Theorems Of Invariant Theory
   HOME
*





First And Second Fundamental Theorems Of Invariant Theory
In algebra, the first and second fundamental theorems of invariant theory concern the generators and the relations of the ring of invariants in the ring of polynomial functions for classical groups (roughly the first concerns the generators and the second the relations). The theorems are among the most important results of invariant theory. Classically the theorems are proved over the complex numbers. But characteristic-free invariant theory extends the theorems to a field of arbitrary characteristic. First fundamental theorem The theorem states that the ring of GL(V)-invariant polynomial functions on ^p \times V^q is generated by the functions \langle \alpha_i , v_j \rangle, where \alpha_i are in V^* and v_j \in V. Second fundamental theorem for general linear group Let ''V'', ''W'' be finite dimensional vector spaces over the complex numbers. Then the only \operatorname(V) \times \operatorname(W)-invariant prime ideals in \mathbb operatorname(V, W)/math> are the determina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Of Invariants
In algebra, the fixed-point subring R^f of an automorphism ''f'' of a ring ''R'' is the subring of the fixed points of ''f'', that is, :R^f = \. More generally, if ''G'' is a group acting on ''R'', then the subring of ''R'' :R^G = \ is called the fixed subring or, more traditionally, the ring of invariants under . If ''S'' is a set of automorphisms of ''R'', the elements of ''R'' that are fixed by the elements of ''S'' form the ring of invariants under the group generated by ''S''. In particular, the fixed-point subring of an automorphism ''f'' is the ring of invariants of the cyclic group generated by ''f''. In Galois theory, when ''R'' is a field and ''G'' is a group of field automorphisms, the fixed ring is a subfield called the fixed field of the automorphism group; see Fundamental theorem of Galois theory. Along with a module of covariants, the ring of invariants is a central object of study in invariant theory. Geometrically, the rings of invariants are the coordinate rin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Of Polynomial Functions
In mathematics, the ring of polynomial functions on a vector space ''V'' over a field ''k'' gives a coordinate-free analog of a polynomial ring. It is denoted by ''k'' 'V'' If ''V'' is finite dimensional and is viewed as an algebraic variety, then ''k'' 'V''is precisely the coordinate ring of ''V''. The explicit definition of the ring can be given as follows. If k _1, \dots, t_n/math> is a polynomial ring, then we can view t_i as coordinate functions on k^n; i.e., t_i(x) = x_i when x = (x_1, \dots, x_n). This suggests the following: given a vector space ''V'', let ''k'' 'V''be the commutative ''k''-algebra generated by the dual space V^*, which is a subring of the ring of all functions V \to k. If we fix a basis for ''V'' and write t_i for its dual basis, then ''k'' 'V''consists of polynomials in t_i. If ''k'' is infinite, then ''k'' 'V''is the symmetric algebra of the dual space V^*. In applications, one also defines ''k'' 'V''when ''V'' is defined over some subfield of '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classical Group
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph '' The Classical Groups''. The classical groups form the deepest and most useful part of the subject of linear Lie groups. Most types of classical groups find application in classical and modern phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Invariant Theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are ''invariant'', under the transformations from a given linear group. For example, if we consider the action of the special linear group ''SLn'' on the space of ''n'' by ''n'' matrices by left multiplication, then the determinant is an invariant of this action because the determinant of ''A X'' equals the determinant of ''X'', when ''A'' is in ''SLn''. Introduction Let G be a group, and V a finite-dimensional vector space over a field k (which in classical invariant theory was usually assumed to be the complex numbers). A representation of G in V is a group homomorphism \pi:G \to GL(V), which induces a group action of G on V. If k /math> is the space of polynomial functions on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other res ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimension (vector Space)
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is finite, and if its dimension is infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The complex numbers \Complex are both a real and complex vector space; we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minor (linear Algebra)
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices. Definition and illustration First minors If A is a square matrix, then the ''minor'' of the entry in the ''i''th row and ''j''th column (also called the (''i'', ''j'') ''minor'', or a ''first minor'') is the determinant of the submatrix formed by deleting the ''i''th row and ''j''th column. This number is often denoted ''M''''i,j''. The (''i'', ''j'') ''cofactor'' is obtained by multiplying the minor by (-1)^. To illustrate these definitions, consider the following 3 by 3 matrix, :\begin 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \\ \end To compute the minor ''M''2,3 and the cofactor ''C''2,3, we fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]