HOME





Fundamental Theorem
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus. The names are mostly traditional, so that for example the fundamental theorem of arithmetic is basic to what would now be called number theory. Some of these are classification theorems of objects which are mainly dealt with in the field. For instance, the fundamental theorem of curves describes classification of regular curves in space up to translation and rotation. Likewise, the mathematical literature sometimes refers to the fundamental lemma of a field. The term lemma is conventionally used to denote a proven proposition which is used as a stepping stone to a larger result, rather than as a useful statement in-and-of itself. Fundamental theorems of mathematical topics * Fundamental theorem of algebra * Fundamental theorem of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be thought of as inverses of each other. The first part of the theorem, the first fundamental theorem of calculus, states that for a continuous function , an antiderivative or indefinite integral can be obtained as the integral of over an interval with a variable upper bound. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed Interval (mathematics), interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of a definite integral pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Boolean Algebra
Boole's expansion theorem, often referred to as the Shannon expansion or decomposition, is the identity: F = x \cdot F_x + x' \cdot F_, where F is any Boolean function, x is a variable, x' is the complement of x, and F_xand F_ are F with the argument x set equal to 1 and to 0 respectively. The terms F_x and F_ are sometimes called the positive and negative Shannon cofactors, respectively, of F with respect to x. These are functions, computed by restrict operator, \operatorname(F, x, 0) and \operatorname(F, x, 1) (see valuation (logic) and partial application). It has been called the "fundamental theorem of Boolean algebra". Besides its theoretical importance, it paved the way for binary decision diagrams (BDDs), satisfiability solvers, and many other techniques relevant to computer engineering and formal verification of digital circuits. In such engineering contexts (especially in BDDs), the expansion is interpreted as a if-then-else, with the variable x being the condition and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem On Homomorphisms
In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the Kernel (algebra), kernel and image (mathematics), image of the homomorphism. The homomorphism theorem is used to mathematical proof, prove the isomorphism theorems. Similar theorems are valid for vector spaces, module (mathematics), modules, and ring (mathematics), rings. Group-theoretic version Given two group (mathematics), groups G and H and a group homomorphism f: G \rarr H, let N be a normal subgroup in G and \varphi the natural surjective homomorphism G \rarr G / N (where G / N is the quotient group of G by N). If N is a subset of \ker(f) (where \ker represents a kernel (algebra), kernel) then there exists a unique homomorphism h: G / N \rarr H such that f = h \circ \varphi. In other words, the natural projection \varphi is Universal p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Geometric Calculus
In mathematics, geometric calculus extends geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to reproduce other mathematical theories including vector calculus, differential geometry, and differential forms. Differentiation With a geometric algebra given, let a and b be vectors and let F be a multivector-valued function of a vector. The directional derivative of F along b at a is defined as :(\nabla_b F)(a) = \lim_, provided that the limit exists for all b, where the limit is taken for scalar \epsilon. This is similar to the usual definition of a directional derivative but extends it to functions that are not necessarily scalar-valued. Next, choose a set of basis vectors \ and consider the operators, denoted \partial_i, that perform directional derivatives in the directions of e_i: :\partial_i : F \mapsto (x\mapsto (\nabla_ F)(x)). Then, using the Einstein summation notation, consider the operator: :e^i\partial_i, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Galois Theory
In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most basic form, the theorem asserts that given a field extension ''E''/''F'' that is finite and Galois, there is a one-to-one correspondence between its intermediate fields and subgroups of its Galois group. (''Intermediate fields'' are fields ''K'' satisfying ''F'' ⊆ ''K'' ⊆ ''E''; they are also called ''subextensions'' of ''E''/''F''.) Explicit description of the correspondence For finite extensions, the correspondence can be described explicitly as follows. * For any subgroup ''H'' of Gal(''E''/''F''), the corresponding fixed field, denoted ''EH'', is the set of those elements of ''E'' which are fixed by every automorphism in ''H''. * For any intermediate field ''K'' of ''E''/''F'', the corresponding subgroup is Aut(''E''/''K''), t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Finite Distributive Lattices
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (other).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. Here, a lattice is an abstract structure with two binary operations, the "meet" and "join" operations, which must obey certain axioms; it is distributive if these two operations obey the distributive law. The union and intersection operations, in a family of sets that is closed under these operations, automatically form a distributive lattice, and Birkhoff's representation theorem states that (up to isomorphism) every finite distributive lattice can be formed in this way. It is named after Garrett Birkhoff, who published a proof of it in 1937.. The theorem can be interpreted as providing a one-to-one correspondence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Finitely Generated Modules Over A Principal Ideal Domain
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields. Statement When a vector space over a field ''F'' has a finite generating set, then one may extract from it a basis consisting of a finite number ''n'' of vectors, and the space is therefore isomorphic to ''F''''n''. The corresponding statement with ''F'' generalized to a principal ideal domain ''R'' is no longer true, since a basis for a finitely generated module over ''R'' might not exist. However such a module is still isomorphic to a quotient of some module ''Rn'' with ''n'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamental Theorem Of Finitely Generated Abelian Groups
In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n_s. In this case, we say that the set \ is a '' generating set'' of G or that x_1,\dots, x_s ''generate'' G. So, finitely generated abelian groups can be thought of as a generalization of cyclic groups. Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. Examples * The integers, \left(\mathbb,+\right), are a finitely generated abelian group. * The integers modulo n, \left(\mathbb/n\mathbb,+\right), are a finite (hence finitely generated) abelian group. * Any direct sum of finitely many finitely generated abelian groups is again a finitely generated abelian group. * Every lattice forms a finitely generated free abelian group. There are no other examples (up to isomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Exterior Calculus
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in \R^2 or \R^3, and the divergence theorem is the case of a volume in \R^3. Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus. Stokes' theorem says that the integral of a differential form \omega over the boundary \partial\Omega of some orientable manifold \Omega is equal to the integral of its exterior derivative d\omega over the whole of \Omega, i.e., \int_ \omega = \int_\Omega \operatorname\omega\,. Stokes' theorem was formulated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Equivalence Relations
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]