Function Field (other)
   HOME





Function Field (other)
Function field may refer to: * Function field of an algebraic variety * Function field (scheme theory) * Algebraic function field * Function field sieve * Function field analogy {{mathematical disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Field Of An Algebraic Variety
In algebraic geometry, the function field of an algebraic variety ''V'' consists of objects which are interpreted as rational functions on ''V''. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. Definition for complex manifolds In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions. The function field of a variety is then the set of all meromorphic functions on the variety. (Like all meromorphic functions, these take their values in \mathbb\cup\infty.) Together with the operations of addition and multiplication of functions, this is a field in the sense of algebra. For the Riemann sphere, which is the variety \mathbb^1 over the complex numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Field (scheme Theory)
The sheaf of rational functions ''KX'' of a scheme ''X'' is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of varieties, such a sheaf associates to each open set ''U'' the ring of all rational functions on that open set; in other words, ''KX''(''U'') is the set of fractions of regular functions on ''U''. Despite its name, ''KX'' does not always give a field for a general scheme ''X''. Simple cases In the simplest cases, the definition of ''KX'' is straightforward. If ''X'' is an (irreducible) affine algebraic variety, and if ''U'' is an open subset of ''X'', then ''KX''(''U'') will be the field of fractions of the ring of regular functions on ''U''. Because ''X'' is affine, the ring of regular functions on ''U'' will be a localization of the global sections of ''X'', and consequently ''KX'' will be the constant sheaf whose value is the fraction field of the global sections of ''X''. If ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE