Fractional Coloring
Fractional coloring is a topic in a branch of graph theory known as fractional graph theory. It is a generalization of ordinary graph coloring. In a traditional graph coloring, each vertex in a graph is assigned some color, and adjacent vertices — those connected by edges — must be assigned different colors. In a fractional coloring however, a ''set'' of colors is assigned to each vertex of a graph. The requirement about adjacent vertices still holds, so if two vertices are joined by an edge, they must have no colors in common. Fractional graph coloring can be viewed as the linear programming relaxation of traditional graph coloring. Indeed, fractional coloring problems are much more amenable to a linear programming approach than traditional coloring problems. Definitions A ''b''-fold coloring of a graph ''G'' is an assignment of sets of size ''b'' to vertices of a graph such that adjacent vertices receive disjoint sets. An ''a'':''b''-coloring is a ''b''-fold coloring out ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Fractional Coloring
Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discrete mathematics *Graph of a function *Graph of a relation *Graph paper *Chart, a means of representing data (also called a graph) Computing *Graph (abstract data type), an abstract data type representing relations or connections *graph (Unix), Unix command-line utility *Conceptual graph, a model for knowledge representation and reasoning *Microsoft Graph, a Microsoft API developer platform that connects multiple services and devices Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also * Complex network *Graf *Graff (other) *Graph database *Grapheme, in linguistics *Graphemics *Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") *List of information graphics software *Statist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chromatic Number
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an '' edge coloring'' assigns a color to each edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fractional Matching
In graph theory, a fractional matching is a generalization of a matching in which, intuitively, each vertex may be broken into fractions that are matched to different neighbor vertices. Definition Given a graph G=(V,E), a fractional matching in G is a function that assigns, to each edge e\in E, a fraction f(e)\in ,1/math>, such that for every vertex v\in V, the sum of fractions of edges adjacent to v is at most one: \forall v\in V: \sum_f(e)\leq 1 A matching in the traditional sense is a special case of a fractional matching, in which the fraction of every edge is either zero or one: f(e)=1 if e is in the matching, and f(e)=0 if it is not. For this reason, in the context of fractional matchings, usual matchings are sometimes called ''integral matchings''. Size The size of an integral matching is the number of edges in the matching, and the matching number \nu(G) of a graph G is the largest size of a matching in G. Analogously, the ''size'' of a fractional matching is the sum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integrality Gap
In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over a subring ''A'' of ''B'' if ''b'' is a root of some monic polynomial over ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and of an "integral extension" are precisely " algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial). The case of greatest interest in number theory is that of complex numbers integral over Z (e.g., \sqrt or 1+i); in this context, the integral elements are usually called algebraic integers. The algebraic integers in a finite extension field ''k'' of the rationals Q form a subring of ''k'', called the ring of integers of ''k'', a central object of study in algebraic number theory. In this article, the term ''ring'' will be understood to mean ''commutative ring'' with a multiplicative identity. Definition Let B be a ring and let A \subset B be a subring of B. An elemen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex Coloring
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an ''edge coloring'' assigns a color to each edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mihalis Yannakakis
Mihalis Yannakakis (; born 13 September 1953 in Athens, Greece)Columbia University: CV: Mihalis Yannakakis (accessed 12 November 2009) is a professor of computer science at . He is noted for his work in , , and other related fields. He won the Donald E. Knuth Prize in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carsten Lund
Carsten Lund (born July 1, 1963) is a Danish-born theoretical computer scientist, currently working at AT&T Labs in Bedminster, New Jersey, United States. Lund was born in Aarhus, Denmark, and received the "kandidat" degree in 1988 from the University of Aarhus and his Ph.D. from the University of Chicago in computer science. His thesis, entitled The Power of Interaction, was chosen as an ACM 'Distinguished Dissertation'. Lund was a co-author on two of five competing papers at the 1990 Symposium on Foundations of Computer Science characterizing complexity classes such as PSPACE and NEXPTIME in terms of interactive proof systems; this work became part of his 1991 Ph.D. thesis from the University of Chicago under the supervision of Lance Fortnow and László Babai, for which he was a runner-up for the 1991 ACM Doctoral Dissertation Award. He is also known for his joint work with Sanjeev Arora, Madhu Sudan, Rajeev Motwani, and Mario Szegedy that discovered the existence of probab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP-hard
In computational complexity theory, a computational problem ''H'' is called NP-hard if, for every problem ''L'' which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from ''L'' to ''H''. That is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP. As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. A simple example of an NP-hard problem is the subset sum problem. Informally, if ''H'' is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Duality
Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual optimal objective are equal. By definition, strong duality holds if and only if the duality gap is equal to 0. This is opposed to weak duality (the primal problem has optimal value smaller than or equal to the dual problem, in other words the duality gap is greater than or equal to zero). Sufficient conditions Each of the following conditions is sufficient for strong duality to hold: * F = F^ where F is the perturbation function relating the primal and dual problems and F^ is the biconjugate of F (follows by construction of the duality gap) * F is convex and lower semi-continuous (equivalent to the first point by the Fenchel–Moreau theorem) * the primal problem is a linear optimization problem * Slater's condition for a convex optimization problem. Strong duality and computational complexity Under certain conditions (called "constraint qualification"), if a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Problem
In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. This fact is called weak duality. In general, the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition. This fact is called strong duality. Dual problem Usually the term "dual problem" refers to the ''Lagrangian dual problem'' but o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear function#As a polynomial function, linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the mathematical optimization, optimization of a linear objective function, subject to linear equality and linear inequality Constraint (mathematics), constraints. Its feasible region is a convex polytope, which is a set defined as the intersection (mathematics), intersection of finitely many Half-space (geometry), half spaces, each of which is defined by a linear inequality. Its objective function is a real number, real-valued affine function, affine (linear) function defined on this polytope. A linear programming algorithm finds a point in the po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
László Lovász
László Lovász (; born March 9, 1948) is a Hungarian mathematician and professor emeritus at Eötvös Loránd University, best known for his work in combinatorics, for which he was awarded the 2021 Abel Prize jointly with Avi Wigderson. He was the president of the International Mathematical Union from 2007 to 2010 and the president of the Hungarian Academy of Sciences from 2014 to 2020. In graph theory, Lovász's notable contributions include the proofs of Kneser's conjecture and the Lovász local lemma, as well as the formulation of the Erdős–Faber–Lovász conjecture. He is also one of the eponymous authors of the LLL lattice reduction algorithm. Early life and education Lovász was born on March 9, 1948, in Budapest, Hungary. Lovász attended the Fazekas Mihály Gimnázium in Budapest. He won three gold medals (1964–1966) and one silver medal (1963) at the International Mathematical Olympiad. He also participated in a Hungarian game show about math prodigi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |