HOME





Fixed Point Theorems In Infinite-dimensional Spaces
In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first result in the field was the Schauder fixed-point theorem, proved in 1930 by Juliusz Schauder (a previous result in a different vein, the Banach fixed-point theorem for contraction mappings in complete metric spaces was proved in 1922). Quite a number of further results followed. One way in which fixed-point theorems of this kind have had a larger influence on mathematics as a whole has been that one approach is to try to carry over methods of algebraic topology, first proved for finite simplicial complexes, to spaces of infinite dimension. For example, the research of Jean Leray who founded sheaf theory came out of efforts to extend Schauder's work. Schauder fixed-point theorem: Let ''C'' be a nonempty closed convex subset of a Banach s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Set
In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary (topology), boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval (mathematics), interval with the property that its epigraph (mathematics), epigraph (the set of points on or above the graph of a function, graph of the function) is a convex set. Convex minimization is a subfield of mathematical optimization, optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brailey Sims
Brailey Sims (born 26 October 1947) is an Australian mathematician born and educated in Newcastle, New South Wales. He received his BSc from the University of Newcastle (Australia) in 1969 and, under the supervision of J. R. Giles, a PhD from the same university in 1972. He was on the faculty of the University of New England (Australia) from 1972 to 1989. In 1990 he took up an appointment at the University of Newcastle (Australia). where he was Head of Mathematics from 1997 to 2000. He is best known for his work in nonlinear analysis and especially metric fixed point theory and its connections with Banach and metric space geometry, and for his efforts to promote and enhance mathematics at the secondary and tertiary level. Publications His most cited publications are: *Mustafa Z, Sims B. A new approach to generalized metric spaces. '' Journal of Nonlinear and convex Analysis''. 2006 Jan 1;7(2):289. According to Google Scholar Google Scholar is a freely accessible web searc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James Dugundji
James Dugundji (August 30, 1919 – January 8, 1985) was an American mathematician, a professor of mathematics at the University of Southern California.. See in particulap. 244for a brief biography of Dugundji.Note about the life and work of Dugundji
by Andrzej Granas in their book ''Fixed Point Theory'', Springer, 2005. Reprinted in , p. 9.
Dugundji's parents emigrated from to , where Dugundji was born in 1919. He studied at

Topological Degree Theory
In mathematics, topological degree theory is a generalization of the winding number of a curve in the complex plane. It can be used to estimate the number of solutions of an equation, and is closely connected to fixed-point theory. When one solution of an equation is easily found, degree theory can often be used to prove existence of a second, nontrivial, solution. There are different types of degree for different types of maps: e.g. for maps between Banach spaces there is the Brouwer degree in R''n'', the Leray-Schauder degree for compact mappings in normed spaces, the coincidence degree and various other types. There is also a degree for continuous maps between manifolds. Topological degree theory has applications in complementarity problems, differential equations, differential inclusions and dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kakutani Fixed-point Theorem
In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions. The theorem was developed by Shizuo Kakutani in 1941, and was used by John Nash in his description of Nash equilibria. It has subsequently found widespread application in game theory and economics. Statement Kakutani's theorem states: : ''Let'' ''S'' ''be a non-empty, compact and convex subset of some Euclidean space'' R''n''. :''Let'' ''φ'':&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ryll-Nardzewski Fixed-point Theorem
In functional analysis, a branch of mathematics, the Ryll-Nardzewski fixed-point theorem states that if E is a normed vector space and K is a nonempty convex subset of E that is compact under the weak topology, then every group (or equivalently: every semigroup) of affine isometries of K has at least one fixed point. (Here, a ''fixed point'' of a set of maps is a point that is fixed by each map in the set.) This theorem was announced by Czesław Ryll-Nardzewski. Later Namioka and Asplund gave a proof based on a different approach. Ryll-Nardzewski himself gave a complete proof in the original spirit. Applications The Ryll-Nardzewski theorem yields the existence of a Haar measure on compact groups. See also * Fixed-point theorems * Fixed-point theorems in infinite-dimensional spaces * Markov-Kakutani fixed-point theorem - abelian semigroup of continuous affine self-maps on compact convex set in a topological vector space has a fixed point References * Andrzej Granas and James Dug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markov–Kakutani Fixed-point Theorem
In mathematics, the Markov–Kakutani fixed-point theorem, named after Andrey Markov and Shizuo Kakutani, states that a commuting family of continuous affine self-mappings of a compact convex subset in a locally convex topological vector space has a common fixed point. This theorem is a key tool in one of the quickest proofs of amenability of abelian groups. Statement Let X be a locally convex topological vector space, with a compact convex subset K. Let S be a family of continuous mappings of K to itself which commute and are ''affine'', meaning that T(\lambda x + (1-\lambda)y) = \lambda T(x) + (1-\lambda)T(y) for all \lambda in (0,1) and T in S. Then the mappings in S share a fixed point. Proof for a single affine self-mapping Let T be a continuous affine self-mapping of K. For x in K define a net \_ in K by : x(N)=\sum_^N T^n(x). Since K is compact, there is a convergent subnet in K: : x(N_i)\rightarrow y. \, To prove that y is a fixed point, it suffices to show that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformly Convex Banach Space
In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936. Definition A uniformly convex space is a normed vector space such that, for every 00 such that for any two vectors with \, x\, = 1 and \, y\, = 1, the condition :\, x-y\, \geq\varepsilon implies that: :\left\, \frac\right\, \leq 1-\delta. Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the segment is short. Properties * The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space X is uniformly convex if and only if for every 00 so that, for any two vectors x and y in the closed unit ball (i.e. \, x\, \le 1 and \, y\, \le 1 ) with \, x-y\, \ge \varepsilon , one has \left\, \right\, \le 1-\delta (note that, given \varepsilon , the corresponding value of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locally Convex Topological Vector Space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex topological vector spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]