HOME





First Variation
In applied mathematics and the calculus of variations, the first variation of a functional ''J''(''y'') is defined as the linear functional \delta J(y) mapping the function ''h'' to :\delta J(y,h) = \lim_ \frac = \left.\frac J(y + \varepsilon h)\_, where ''y'' and ''h'' are functions, and ''ε'' is a scalar. This is recognizable as the Gateaux derivative of the functional. Example Compute the first variation of :J(y)=\int_a^b yy' \mathrmx. From the definition above, : \begin \delta J(y,h)&=\left.\frac J(y + \varepsilon h)\_\\ &= \left.\frac \int_a^b (y + \varepsilon h)(y^\prime + \varepsilon h^\prime) \ \mathrmx\_\\ &= \left.\frac \int_a^b (yy^\prime + y\varepsilon h^\prime + y^\prime\varepsilon h + \varepsilon^2 hh^\prime) \ \mathrmx\_\\ &= \left.\int_a^b \frac (yy^\prime + y\varepsilon h^\prime + y^\prime\varepsilon h + \varepsilon^2 hh^\prime) \ \mathrmx \_\\ &= \left.\int_a^b (yh^\prime + y^\prime h + 2\varepsilon hh^\prime) \ \mathrmx\_\\ &= \int_a^b (yh^\prime + y^\p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calculus Of Variations
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of functionals: Map (mathematics), mappings from a set of Function (mathematics), functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functional (mathematics)
In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). * In linear algebra, it is synonymous with a linear form, which is a linear mapping from a vector space V into its field of scalars (that is, it is an element of the dual space V^*) "Let ''E'' be a free module over a commutative ring ''A''. We view ''A'' as a free module of rank 1 over itself. By the dual module ''E''∨ of ''E'' we shall mean the module Hom(''E'', ''A''). Its elements will be called functionals. Thus a functional on ''E'' is an ''A''-linear map ''f'' : ''E'' → ''A''." * In functional analysis and related fields, it refers to a mapping from a space X into the field of real or complex numbers. "A numerical function ''f''(''x'') defined on a normed linear space ''R'' will be called a ''functional''. A functional ''f''(''x'') is said to be ''linear'' if ''f''(α''x'' + β''y'') = α''f''(''x'') + β ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gateaux Derivative
In mathematics, the Gateaux differential or Gateaux derivative is a generalization of the concept of directional derivative in differential calculus. Named after René Gateaux, it is defined for functions between locally convex topological vector spaces such as Banach spaces. Like the Fréchet derivative on a Banach space, the Gateaux differential is often used to formalize the functional derivative commonly used in the calculus of variations and physics. Unlike other forms of derivatives, the Gateaux differential of a function may be a nonlinear operator. However, often the definition of the Gateaux differential also requires that it be a continuous linear transformation. Some authors, such as , draw a further distinction between the Gateaux differential (which may be nonlinear) and the Gateaux derivative (which they take to be linear). In most applications, continuous linearity follows from some more primitive condition which is natural to the particular setting, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calculus Of Variations
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of functionals: Map (mathematics), mappings from a set of Function (mathematics), functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Functional Derivative
In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative) relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends. In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integrand of a functional, if a function is varied by adding to it another function that is arbitrarily small, and the resulting integrand is expanded in powers of , the coefficient of in the first order term is called the functional derivative. For example, consider the functional J = \int_a^b L( \, x, f(x), f' \, ) \, dx \, , where . If is varied by adding to it a function , and the resulting integrand is expanded in powers of , then the change in the value of to first order in can be expressed as follows:According to , this notation is customary in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second Variation
In the calculus of variations, the second variation extends the idea of the second derivative test to functionals. Much like for functions, at a stationary point where the first derivative is zero, the second derivative determines the nature of the stationary point; it may be negative (if the point is a maximum point), positive (if a minimum) or zero (if a saddle point). Via the second functional, it is possible to derive powerful necessary conditions for solving variational problems, such as the Legendre–Clebsch condition and the Jacobi necessary condition detailed below. Motivation Much of the calculus of variations relies on the first variation, which is a generalization of the first derivative to a functional. An example of a class of variational problems is to find the function y which minimizes the integral J = \int_a^b f(x, y, y')dx on the interval , b/math>; J here is a functional (a mapping which takes a function and returns a scalar). It is known tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]