Feebly Interacting Particle
   HOME





Feebly Interacting Particle
Feebly interacting particles (FIPs) are subatomic particles defined by having extremely suppressed interactions with the Standard Model (SM) bosons and / or fermions. These particles are potential thermal dark matter candidates, extending the model of weakly interacting massive particles (WIMPs) to include weakly interacting sub-eV particles (WISPs) and others. FIP physics is also known as ''dark-sector physics''. Candidates FIP candidates could be massive (FIMP / WIMP) or massless and coupled to the SM particles through some minimal coupling strength. The light FIPs are theorized to be dark matter candidates, and, they provide an explanation for the origin of neutrino masses and CP symmetry in strong interactions. Neutrinos technically qualify as FIPs, but usually when the acronym "FIP" is used, it is intended to refer to some other, as-yet unknown particle. Cai, Cacciapaglia, and Lee (2022) proposed massive gravitons as feebly Interacting particle candidates. Se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physics be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CP Violation
In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge conjugation symmetry) and P-symmetry ( parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). CP violation is only observed in the weak interaction. The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch. CP violation was subsequently discovered in many other meson decays. In 2025, the LHCb experiment discovered CP violation in baryons. There is some evidence CP violation may occur in neutrino interactions. It is important to the matter-antimatter asymmetry problem, the strong CP problem, and in the study of weak interactions in particle physics. Under the CPT theorem, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics Beyond The Standard Model
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, baryon asymmetry, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the Quantum field theory, mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as Gravitational singularity, spacetime singularities like the Big Bang and black hole event horizons. Theories that lie beyond the Standard Model include various extensions of the standard model through supersymmetry, such as the Minimal Supersymmetric Standard Model (MSSM) and Next-to-Minimal Supersymmetric Standard Model (NMSSM), and entirely novel explanations, such as string theory, M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypothetical Particles
This is a list of hypothetical subatomic particles in physics. Elementary particles Some theories predict the existence of additional elementary bosons and fermions that are not found in the Standard Model. Particles predicted by supersymmetric theories Supersymmetry predicts the existence of superpartners to particles in the Standard Model, none of which have been confirmed experimentally. The sfermions (spin-0) include: Another hypothetical sfermion is the saxion, superpartner of the axion. Forms a supermultiplet, together with the axino and the axion, in supersymmetric extensions of Peccei–Quinn theory. The predicted bosinos (spin ) are Just as the photon, Z and W± bosons are superpositions of the B, W, W, and W fields, the photino, zino, and wino are superpositions of the bino, wino, wino, and wino. No matter if one uses the original gauginos or this superpositions as a basis, the only predicted physical particles are neutralinos and charginos as a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Matter
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relativity unless more matter is present than can be observed. Such effects occur in the context of Galaxy formation and evolution, formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background Anisotropy, anisotropies. Dark matter is thought to serve as gravitational scaffolding for cosmic structures. After the Big Bang, dark matter clumped into blobs along narrow filaments with superclusters of galaxies forming a cosmic web at scales on which entire galaxies appear like tiny particles. In the standard Lambda-CDM model of cosmology, the mass–energy equivalence, mass–energy content o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weakly Interacting Massive Particle
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, it is an elementary particle which interacts via gravity and any other force (or forces) which is as weak as or weaker than the weak nuclear force, but also non-vanishing in strength. Many WIMP candidates are expected to have been produced thermally in the early Universe, similarly to the particles of the Standard Model according to Big Bang cosmology, and usually will constitute cold dark matter. Obtaining the correct abundance of dark matter today via thermal production requires a self-annihilation Cross section (physics), cross section of \langle \sigma v \rangle ≃ , which is roughly what is expected for a new particle in the 100 GeV/''c''2 mass range that interacts via the electroweak force. Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. The journal is considered one of the most prestigious in the field of physics. Over a quarter of Physics Nobel Prize-winning papers between 1995 and 2017 were published in it. ''PRL'' is published both online and as a print journal. Its focus is on short articles ("letters") intended for quick publication. The Lead Editor is Hugues Chaté. The Managing Editor is Robert Garisto. History The journal was created in 1958. Samuel Goudsmit, who was then the editor of '' Physical Review'', the American Physical Society's flagship journal, organized and published ''Letters to the Editor of Physical Review'' into a new standalone journal'','' which became ''Physical Review Letters''. It was the first journal intended for the rapid publication of short articles, a format that eventually became popular in many other fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Massive Gravity
Massive is an adjective related to mass. Massive may refer to: Arts, entertainment, and media * Massive (band), an Australian Hard Rock band * ''Massive'', an album by The Supervillains released in 2008 * Massive Attack, a British musical group, who were temporarily known as Massive in 1991 * Massive (song), "Massive" (song), a song by Drake from the 2022 album ''Honestly, Nevermind'' * Massive (TV series), ''Massive'' (TV series), a situation comedy first aired on BBC3 in September 2008 * Massive! (TV programme), ''Massive!'' (TV programme), a short-lived Saturday morning British television programme (1995–1996) * ''MMO Games Magazine'', formerly ''MASSIVE Magazine'', a short-lived computer magazine * ''Massive: Gay Erotic Manga and the Men Who Make It'', a 2014 manga anthology * The Massive (comics), ''The Massive'' (comics), an ongoing comic series * The Massive, a starship in the U.S. animated television series ''Invader Zim'' * Massive, the villain in ''Loonatics Unleashe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strong Interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, neutron, neutrons, and other hadron particles, and also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force. Most of the mass–energy equivalence, mass of a proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10−15 m (1 femtometer, slightly more than the radius of a nucleon), the strong force is approximately 100 times as strong as electromagnetism, 106 times as strong as the weak interaction, and 1038 times as strong as Gravity, gravitation. In the context of atomic nuclei, the force binds protons and neutrons together to form a nucleus and is called the nuclear force (or ''residual strong force'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles (excluding massless particles). The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Consequently, neutrinos typically pass through normal matter unimpeded and with no detectable effect. Weak interactions create neutrinos in one of three leptonic flavors: # electron neutrino, # muon neutrino, # tau neutrino, Each flavor is associated with the correspondingly named charged lepton. Although neutrinos were long believed to be mas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer spin (1/2, 3/2, 5/2, ...). Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name ''boson'' to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter"). Certain elementary bosons (e.g. gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) contributes to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents. Outside the realm of particle physics, multiple identical composite bosons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dark Matter
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relativity unless more matter is present than can be observed. Such effects occur in the context of Galaxy formation and evolution, formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background Anisotropy, anisotropies. Dark matter is thought to serve as gravitational scaffolding for cosmic structures. After the Big Bang, dark matter clumped into blobs along narrow filaments with superclusters of galaxies forming a cosmic web at scales on which entire galaxies appear like tiny particles. In the standard Lambda-CDM model of cosmology, the mass–energy equivalence, mass–energy content o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]