Essentially Unique
In mathematics, the term essentially unique is used to describe a weaker form of uniqueness, where an object satisfying a property is "unique" only in the sense that all objects satisfying the property are equivalent to each other. The notion of essential uniqueness presupposes some form of "sameness", which is often formalized using an equivalence relation. A related notion is a universal property, where an object is not only essentially unique, but unique ''up to a unique isomorphism'' (meaning that it has trivial automorphism group). In general there can be more than one isomorphism between examples of an essentially unique object. Examples Set theory At the most basic level, there is an essentially unique set of any given cardinality, whether one labels the elements \ or \. In this case, the nonuniqueness of the isomorphism (e.g., match 1 to a or 1 to ''c'') is reflected in the symmetric group. On the other hand, there is an essentially unique ''ordered'' set of any given fini ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Strictly Positive Measure
In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure is one that is "nowhere zero", or that is zero "only on points". Definition Let (X, T) be a Hausdorff topological space and let \Sigma be a \sigmaalgebra on X that contains the topology T (so that every open set is a measurable set, and \Sigma is at least as fine as the Borel \sigmaalgebra on X). Then a measure \mu on (X, \Sigma) is called strictly positive if every nonempty open subset of X has strictly positive measure. More concisely, \mu is strictly positive if and only if for all U \in T such that U \neq \varnothing, \mu (U) > 0. Examples * Counting measure on any set X (with any topology) is strictly positive. * Dirac measure is usually not strictly positive unless the topology T is particularly "coarse" (contains "few" sets). For example, \delta_0 on the real line \R with its usual Borel topology and \sigmaalgebra is not strictly positive; however, if \R is e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits. Limits and colimits, like the strongly related notions of universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. One is most often interested in the case where the category J is a small or even fin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Semisimple Lie Group
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a nonabelian Lie algebra without any nonzero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finitedimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is nondegenerate; *\mathfrak g has no nonzero abelian ideals; *\mathfrak g has no nonzero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple Lie ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Maximal Compact Subgroup
In mathematics, a maximal compact subgroup ''K'' of a topological group ''G'' is a subgroup ''K'' that is a compact space, in the subspace topology, and maximal amongst such subgroups. Maximal compact subgroups play an important role in the classification of Lie groups and especially semisimple Lie groups. Maximal compact subgroups of Lie groups are ''not'' in general unique, but are unique up to conjugation – they are essentially unique. Example An example would be the subgroup O(2), the orthogonal group, inside the general linear group GL(2, R). A related example is the circle group SO(2) inside SL(2, R). Evidently SO(2) inside GL(2, R) is compact and not maximal. The nonuniqueness of these examples can be seen as any inner product has an associated orthogonal group, and the essential uniqueness corresponds to the essential uniqueness of the inner product. Definition A maximal compact subgroup is a maximal subgroup amongst compact subgroups – a ''maximal (compact subgro ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Prime Knot
In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a nontrivial knot which cannot be written as the knot sum of two nontrivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not. A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus ''p'' times in one direction and ''q'' times in the other, where ''p'' and ''q'' are coprime integers. Knots are characterized by their crossing numbers. The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)torus knot. The figureeight knot, with four crossings, is the simplest nontorus knot. For any positive integer ''n'', there are a finite number of prime knots with ''n'' crossings. The first few values are given in the following table. : Enantiomorphs are counte ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Knot Theory
In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar d ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, thi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

2sphere
A sphere () is a geometrical object that is a threedimensional analogue to a twodimensional circle. A sphere is the set of points that are all at the same distance from a given point in threedimensional space.. That given point is the centre of the sphere, and is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental object in many fields of mathematics. Spheres and nearlyspherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier is the sphere's ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an ndimensional manifold, or ''nmanifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of ndimensional Euclidean space. Onedimensional manifolds include lines and circles, but not lemniscates. Twodimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of wellunderstood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computergraphics given the need to associate pictures with coordinates ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Simply Connected
In topology, a topological space is called simply connected (or 1connected, or 1simply connected) if it is pathconnected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a pathconnected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is pathconnected and any loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circle and closed unit disk in the Euclidean plane respectively. An equivalent formulation is this: X is simply connected if and only if it is pathconnected, and when ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and \infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 