Empirical Process Theory
   HOME
*





Empirical Process Theory
In probability theory, an empirical process is a stochastic process that describes the proportion of objects in a system in a given state. For a process in a discrete state space a population continuous time Markov chain or Markov population model is a process which counts the number of objects in a given state (without rescaling). In mean field theory, limit theorems (as the number of objects becomes large) are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics. Definition For ''X''1, ''X''2, ... ''X''''n'' independent and identically-distributed random variables in R with common cumulative distribution function ''F''(''x''), the empirical distribution function is defined by :F_n(x)=\frac\sum_^n I_(X_i), where I''C'' is the indicator function of the set ''C''. For every (fixed) ''x'', ''F''''n''(''x'') is a sequence of random variables which converge to ''F''(''x'') alm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signed Measure
In mathematics, signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values. Definition There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. Signed measures are usually only allowed to take finite real values, while some textbooks allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures". Given a measurable space (X, \Sigma) (that is, a set X with a σ-algebra \Sigma on it), an extended signed measure is a set function \mu : \Sigma \to \R \cup \ such that \mu(\varnothing) = 0 and \mu is σ-additive – that is, it satisfies the equality \mu\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu(A_n) for any sequence A_1, A_2, \ldots, A_n, \ldots of disjoint sets in \Sigma. The series on the right must converge absolutely when the value of the left-h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Khmaladze Transformation
In statistics, the Khmaladze transformation is a mathematical tool used in constructing convenient goodness of fit tests for hypothetical distribution functions. More precisely, suppose X_1,\ldots, X_n are i.i.d., possibly multi-dimensional, random observations generated from an unknown probability distribution. A classical problem in statistics is to decide how well a given hypothetical distribution function F, or a given hypothetical parametric family of distribution functions \, fits the set of observations. The Khmaladze transformation allows us to construct goodness of fit tests with desirable properties. It is named after Estate V. Khmaladze. Consider the sequence of empirical distribution functions F_n based on a sequence of i.i.d random variables, X_1,\ldots, X_n, as ''n'' increases. Suppose F is the hypothetical distribution function of each X_i. To test whether the choice of F is correct or not, statisticians use the normalized difference, : v_n(x)=\sqrt _n(x)-F( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brownian Bridge
A Brownian bridge is a continuous-time stochastic process ''B''(''t'') whose probability distribution is the conditional probability distribution of a standard Wiener process ''W''(''t'') (a mathematical model of Brownian motion) subject to the condition (when standardized) that ''W''(''T'') = 0, so that the process is pinned to the same value at both ''t'' = 0 and ''t'' = ''T''. More precisely: : B_t := (W_t\mid W_T=0),\;t \in ,T The expected value of the bridge at any ''t'' in the interval ,''T''is zero, with variance \textstyle\frac, implying that the most uncertainty is in the middle of the bridge, with zero uncertainty at the nodes. The covariance of ''B''(''s'') and ''B''(''t'') is \min(s,t)-\frac, or ''s''(T − ''t'')/T if ''s'' < ''t''. The increments in a Brownian bridge are not independent.


Relation to other stochastic processes

If ''W''(''t'') is a standard Wiener process (i.e., for ''t'' ≥  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak Convergence Of Measures
In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by ''convergence of measures'', consider a sequence of measures μ''n'' on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be ''N'' sufficiently large for ''n'' ≥ ''N'' to ensure the 'difference' between μ''n'' and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength. Three of the most common notions of convergence are described below. Informal descriptions This section attempts to pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empirical Distribution Function
In statistics, an empirical distribution function (commonly also called an empirical Cumulative Distribution Function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by at each of the data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value. The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function. Definition Let be independent, identically distributed real random variables with the common cumulative distributi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Process
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space. The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based on the notion of the Gaussian distribution (normal distribution). Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions. Gaussian processes are useful in statistical modelling, benefiting from properties inherited from the normal distribution. For example, if a random process is modelled as a Gaussian process, the distribu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence Of Random Variables
In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied. The different possible notions of convergence relate to how such a behavior can be characterized: two readily understood behaviors are that the sequence eventually takes a constant value, and that values in the sequence continue to change but can be described by an unchanging probability distribution. Background "Stochastic convergence" formalizes the idea that a sequence of essentially random or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Donsker's Theorem
In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem. Let X_1, X_2, X_3, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let S_n:=\sum_^n X_i. The stochastic process S:=(S_n)_ is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by : W^(t) := \frac, \qquad t\in ,1 The central limit theorem asserts that W^(1) converges in distribution to a standard Gaussian random variable W(1) as n\to\infty. Donsker's invariance principle extends this convergence to the whole function W^:=(W^(t))_. More precisely, in its modern form, Donsker's invariance principle states that: As random variables taking values in the Skorokhod space \mathcal ,1/math>, the random function W^ converges in distribution to a standard Brownian m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]