Existence Theorem
In mathematics, an existence theorem is a theorem which asserts the existence of a certain object. It might be a statement which begins with the phrase " there exist(s)", or it might be a universal statement whose last quantifier is existential (e.g., "for all , , ... there exist(s) ..."). In the formal terms of symbolic logic, an existence theorem is a theorem with a prenex normal form involving the existential quantifier, even though in practice, such theorems are usually stated in standard mathematical language. For example, the statement that the sine function is continuous everywhere, or any theorem written in big O notation, can be considered as theorems which are existential by nature—since the quantification can be found in the definitions of the concepts used. A controversy that goes back to the early twentieth century concerns the issue of purely theoretic existence theorems, that is, theorems which depend on non-constructive foundational material such as the axiom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sqrt2 Is Irrational
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square (algebra), square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4^2 = (-4)^2 = 16. Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'' or simply ''the square root'' (with a definite article, see below), which is denoted by \sqrt, where the symbol "\sqrt" is called the ''radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case, 9. For non-negative , the principal square root can also be written in Exponentiation, exponent notation, as x^. Every positive number has two square roots: \sqrt (which is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructivism (mathematics)
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation. There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniqueness Theorem
In mathematics, a uniqueness theorem, also called a unicity theorem, is a theorem asserting the uniqueness of an object satisfying certain conditions, or the equivalence of all objects satisfying the said conditions. Examples of uniqueness theorems include: * Cauchy's theorem (geometry), Cauchy's rigidity theorem and Alexandrov's uniqueness theorem for three-dimensional polyhedra. * Black hole uniqueness theorem * Cauchy–Kowalevski theorem is the main local existence theorem, existence and uniqueness theorem for analytic function, analytic partial differential equations associated with Cauchy problem, Cauchy initial value problems. * Cauchy–Kowalevski theorem#Cauchy–Kowalevski–Kashiwara theorem, Cauchy–Kowalevski–Kashiwara theorem is a wide generalization of the Cauchy–Kowalevski theorem for systems of linear partial differential equations with analytic coefficients. *Euclidean division#Statement of the theorem, Division theorem, the uniqueness of quotient and remainder ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructivism (philosophy Of Mathematics)
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation. There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such as CZF ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type Theory
In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that have been proposed as foundations are: * Typed λ-calculus of Alonzo Church * Intuitionistic type theory of Per Martin-Löf Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid paradoxes in naive set theory and formal logic, such as Russell's paradox which demonstrates that, without proper axioms, it is possible to define the set of all sets that are not members of themselves; this set both contains itself and does not contain itself. Between 1902 and 1908, Bertrand Russell proposed various solutions to this problem. By 1908, Russell arrive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modulus Of Continuity
In mathematical analysis, a modulus of continuity is a function ω : , ∞→ , ∞used to measure quantitatively the uniform continuity of functions. So, a function ''f'' : ''I'' → R admits ω as a modulus of continuity if :, f(x)-f(y), \leq\omega(, x-y, ), for all ''x'' and ''y'' in the domain of ''f''. Since moduli of continuity are required to be infinitesimal at 0, a function turns out to be uniformly continuous if and only if it admits a modulus of continuity. Moreover, relevance to the notion is given by the fact that sets of functions sharing the same modulus of continuity are exactly equicontinuous families. For instance, the modulus ω(''t'') := ''kt'' describes the k- Lipschitz functions, the moduli ω(''t'') := ''kt''α describe the Hölder continuity, the modulus ω(''t'') := ''kt''(, log ''t'', +1) describes the almost Lipschitz class, and so on. In general, the role of ω is to fix some explicit functional dependence of ε on δ in the (ε, δ) definition of uni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Errett Bishop
Errett Albert Bishop (July 14, 1928 – April 14, 1983) was an American mathematician known for his work on analysis. He is best known for developing constructive analysis in his 1967 ''Foundations of Constructive Analysis'', where he proved most of the important theorems in real analysis using " constructivist" methods. Life Errett Bishop's father, Albert T. Bishop, graduated from the United States Military Academy at West Point, ending his career as professor of mathematics at Wichita State University in Kansas. Although he died when Errett was less than 4 years old, he influenced Errett's eventual career by the math texts he left behind, which is how Errett discovered mathematics. Errett grew up in Newton, Kansas. Errett and his sister were apparent math prodigies. Bishop entered the University of Chicago in 1944, obtaining both the BS and MS in 1947. The doctoral studies he began in that year were interrupted by two years in the US Army, 1950–52, doing mathematical resear ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructive Mathematics
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation. There are many forms of constructivism. These include the program of intuitionism founded by Luitzen Egbertus Jan Brouwer, Brouwer, the finitism of David Hilbert, Hilbert and Paul Bernays, Bernays, the constructive recursive mathematics of Nikolai Aleksandrovich Shanin, Shanin and Andrey Markov (Soviet mathematician), Markov, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nash Equilibrium
In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed). The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly. If each player has chosen a strategy an action plan based on what has happened so far in the game and no one can increase one's own expected payoff by changing one's strategy while the other players keep theirs unchanged, then the current set of strategy choices constitutes a Nash equilibrium. If two players Alice and Bob choose strategies A and B, (A, B) is a Nash equilibrium if Alice has no other strategy available that does better than A at maximizing her payoff in response to Bob choosing B, and Bob has no other strategy available that does better than B at maximizing his payoff in response to Alice c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Forbes Nash, Jr
John Forbes Nash Jr. (June 13, 1928 – May 23, 2015), known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations. Nash and fellow game theorists John Harsanyi and Reinhard Selten were awarded the 1994 Nobel Prize in Economics. In 2015, Louis Nirenberg and he were awarded the Abel Prize for their contributions to the field of partial differential equations. As a graduate student in the Princeton University Department of Mathematics, Nash introduced a number of concepts (including Nash equilibrium and the Nash bargaining solution), which are now considered central to game theory and its applications in various sciences. In the 1950s, Nash discovered and proved the Nash embedding theorems by solving a system of nonlinear partial differential equations arising in Riemannian geometry. This work, also introducing a preliminary form of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |