HOME





Exact Differential Equation
In mathematics, an exact differential equation or total differential equation is a certain kind of ordinary differential equation which is widely used in physics and engineering. Definition Given a simply connected and open subset ''D'' of \mathbb^2 and two functions ''I'' and ''J'' which are continuous on ''D'', an implicit first-order ordinary differential equation of the form : I(x, y)\, dx + J(x, y)\, dy = 0, is called an exact differential equation if there exists a continuously differentiable function ''F'', called the potential function, so that :\frac = I and :\frac = J. An exact equation may also be presented in the following form: :I(x, y) + J(x, y) \, y'(x) = 0 where the same constraints on ''I'' and ''J'' apply for the differential equation to be exact. The nomenclature of "exact differential equation" refers to the exact differential of a function. For a function F(x_0, x_1,...,x_,x_n), the exact or total derivative with respect to x_0 is given by :\frac=\frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematics), function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equation, ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with stochastic differential equations, ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simply Connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any Loop (topology), loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two points), an open set is a set that, with every point in it, contains all points of the metric space that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, an open set is a member of a given Set (mathematics), collection of Subset, subsets of a given set, a collection that has the property of containing every union (set theory), union of its members, every finite intersection (set theory), intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology (structure), topology. These conditions are very loose, and allow enormous flexibility in the choice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Implicit Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y',\ldots, y^ are the successive derivatives of the unknown function y of the variable x. Among or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuously Differentiable
In mathematics, a differentiable function of one Real number, real variable is a Function (mathematics), function whose derivative exists at each point in its Domain of a function, domain. In other words, the Graph of a function, graph of a differentiable function has a non-Vertical tangent, vertical tangent line at each interior point in its domain. A differentiable function is Smoothness, smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or Cusp (singularity), cusp. If is an interior point in the domain of a function , then is said to be ''differentiable at'' if the derivative f'(x_0) exists. In other words, the graph of has a non-vertical tangent line at the point . is said to be differentiable on if it is differentiable at every point of . is said to be ''continuously differentiable'' if its derivative is also a continuous function over the domain of the function f. Generally speaking, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Differential
In multivariate calculus, a differential (infinitesimal), differential or differential form is said to be exact or perfect (''exact differential''), as contrasted with an inexact differential, if it is equal to the general differential dQ for some differentiable function Q in an Orthogonal coordinates, orthogonal coordinate system (hence Q is a multivariable function Dependent and independent variables#In pure mathematics, whose variables are independent, as they are always expected to be when treated in multivariable calculus). An exact differential is sometimes also called a ''total differential'', or a ''full differential'', or, in the study of differential geometry, it is termed an exact form. The integral of an exact differential over any integral path is Conservative vector field#Path independence, path-independent, and this fact is used to identify state functions in thermodynamics. Overview Definition Even if we work in three dimensions here, the definitions of exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Derivative
In mathematics, the total derivative of a function at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when is a function of several variables, because when is a function of a single variable, the total derivative is the same as the ordinary derivative of the function. The total derivative as a linear map Let U \subseteq \R^n be an open subset. Then a function f:U \to \R^m is said to be (totally) differentiable at a point a\in U if there exists a linear transformation df_a:\R^n \to \R^m such that :\lim_ \frac=0. The linear map df_a is called the (total) derivative or (total) differential of f at a. Other notations for the total derivative inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Differential
In multivariate calculus, a differential (infinitesimal), differential or differential form is said to be exact or perfect (''exact differential''), as contrasted with an inexact differential, if it is equal to the general differential dQ for some differentiable function Q in an Orthogonal coordinates, orthogonal coordinate system (hence Q is a multivariable function Dependent and independent variables#In pure mathematics, whose variables are independent, as they are always expected to be when treated in multivariable calculus). An exact differential is sometimes also called a ''total differential'', or a ''full differential'', or, in the study of differential geometry, it is termed an exact form. The integral of an exact differential over any integral path is Conservative vector field#Path independence, path-independent, and this fact is used to identify state functions in thermodynamics. Overview Definition Even if we work in three dimensions here, the definitions of exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inexact Differential Equation
An inexact differential equation is a differential equation of the form: : M(x,y) \, dx+N(x,y) \, dy=0 satisfying the condition : \frac \ne \frac Leonhard Euler invented the integrating factor in 1739 to solve these equations. Solution method To solve an inexact differential equation, it may be transformed into an exact differential equation by finding an integrating factor \mu. Multiplying the original equation by the integrating factor gives: : \mu M\,dx+\mu N\,dy=0. For this equation to be exact, \mu must satisfy the condition: : \frac=\frac. Expanding this condition gives: :M\mu_y-N\mu_x+(M_y-N_x)\mu = 0. Since this is a partial differential equation, it is generally difficult. However in some cases where \mu depends only on x or y, the problem reduces to a separable first-order linear differential equation. The solutions for such cases are: :\mu(y)=e^ or :\mu(x)=e^. See Also * Inexact differential * Exact differential equation In mathematics, an exact d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]