Euler's Four-square Identity
In mathematics, Euler's four-square identity says that the product of two numbers, each of which is a sum of four squares, is itself a sum of four squares. Algebraic identity For any pair of quadruples from a commutative ring, the following expressions are equal: \begin & \left(a_1^2+a_2^2+a_3^2+a_4^2\right) \left(b_1^2+b_2^2+b_3^2+b_4^2\right) \\ mu&\qquad = \left(a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4\right)^2 + \left(a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3\right)^2 \\ mu &\qquad\qquad+ \left(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2\right)^2 + \left(a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1\right)^2. \end Euler wrote about this identity in a letter dated May 4, 1748 to Goldbach (but he used a different sign convention from the above). It can be verified with elementary algebra. The identity was used by Lagrange to prove his four square theorem. More specifically, it implies that it is sufficient to prove the theorem for prime numbers, after which the more general theorem follows. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hurwitz's Theorem (normed Division Algebras)
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a nondegenerate positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions, and that there are no other possibilities. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras. The theory of composition algebras has subsequently been generalized to arbitrary quadratic forms and arbitrary fields. Hurwitz's theorem implies that multiplicative formulas for sums of squares can only occur in 1, 2, 4 and 8 dimensions, a result originally proved by Hurwitz in 1898. It is a special case of the Hurwitz problem, solved also in . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations ( Diophantine geometry). Questions in number theory can often be understood through the study of analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is that it deals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Identities
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain domain of discourse. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Formally, an identity is a universally quantified equality. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latin Square
Latin ( or ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally spoken by the Latins in Latium (now known as Lazio), the lower Tiber area around Rome, Italy. Through the expansion of the Roman Republic, it became the dominant language in the Italian Peninsula and subsequently throughout the Roman Empire. It has greatly influenced many languages, including English, having contributed many words to the English lexicon, particularly after the Christianization of the Anglo-Saxons and the Norman Conquest. Latin roots appear frequently in the technical vocabulary used by fields such as theology, the sciences, medicine, and law. By the late Roman Republic, Old Latin had evolved into standardized Classical Latin. Vulgar Latin refers to the less prestigious colloquial registers, attested in inscriptions and some literary works such as those of the comic playwrights Plautus and Terence and the author Petronius. Whil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pfister's Sixteen-square Identity
In algebra, Pfister's sixteen-square identity is a non- bilinear identity of form \left(x_1^2+x_2^2+x_3^2+\cdots+x_^2\right)\left(y_1^2+y_2^2+y_3^2+\cdots+y_^2\right) = z_1^2+z_2^2+z_3^2+\cdots+z_^2 It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s, and independently by Albrecht Pfister around the same time. There are several versions, a concise one of which is \begin &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \end If all x_i and y_i with i>8 are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The u_i are \begin &u_1 = \tfrac \\ &u_2 = \tfrac \\ &u_3 = \tfrac \\ &u_4 = \tfrac \\ &u_5 = \tfrac \\ &u_6 = \tfrac \\ &u_7 = \tfrac \\ &u_8 = \tfrac \end and, a=-1,\;\;b=0,\;\;c=x_1^2+x_2^2+x_3^2+x_4^2+x_5 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Degen's Eight-square Identity
In mathematics, Degen's eight-square identity establishes that the product of two numbers, each of which is a sum of eight squares, is itself the sum of eight squares. Namely: \begin & \left(a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2+a_7^2+a_8^2\right)\left(b_1^2+b_2^2+b_3^2+b_4^2+b_5^2+b_6^2+b_7^2+b_8^2\right) = \\ ex & \quad \left(a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4 - a_5 b_5 - a_6 b_6 - a_7 b_7 - a_8 b_8\right)^2+ \\ & \quad \left(a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3 + a_5 b_6 - a_6 b_5 - a_7 b_8 + a_8 b_7\right)^2+ \\ & \quad \left(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2 + a_5 b_7 + a_6 b_8 - a_7 b_5 - a_8 b_6\right)^2+ \\ & \quad \left(a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1 + a_5 b_8 - a_6 b_7 + a_7 b_6 - a_8 b_5\right)^2+ \\ & \quad \left(a_1 b_5 - a_2 b_6 - a_3 b_7 - a_4 b_8 + a_5 b_1 + a_6 b_2 + a_7 b_3 + a_8 b_4\right)^2+ \\ & \quad \left(a_1 b_6 + a_2 b_5 - a_3 b_8 + a_4 b_7 - a_5 b_2 + a_6 b_1 - a_7 b_4 + a_8 b_3\right)^2+ \\ & \quad \left(a_1 b_7 + a_2 b_8 + a_3 b_5 - a_4 b_6 - a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Denominator
A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A ''common'', ''vulgar'', or ''simple'' fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction , the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates of a cake. Fractions can be used to represent ratios and division. Thus the fraction can be used to represent the ratio 3:4 (the ratio of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Functions
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field . In this case, one speaks of a rational function and a rational fraction ''over ''. The values of the variables may be taken in any field containing . Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is . The set of rational functions over a field is a field, the field of fractions of the ring of the polynomial functions over . Definitions A function f is called a rational function if it can be written in the form : f(x) = \frac where P and Q are polynomial functions of x and Q is not the zero function. The domain of f is the set of all values of x for which the denominator Q(x) is not zero. However, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of Connecticut
The University of Connecticut (UConn) is a public land-grant research university system with its main campus in Storrs, Connecticut, United States. It was founded in 1881 as the Storrs Agricultural School, named after two benefactors. In 1893, the school became a public land grant college, then took its current name in 1939. Over the following decade, social work, nursing, and graduate programs were established. During the 1960s, UConn Health was established for new medical and dental schools. UConn is accredited by the New England Commission of Higher Education. With more than 32,000 students, the University of Connecticut is the largest university in Connecticut by enrollment. The university is classified among "R1: Doctoral Universities – Very high research activity". UConn is one of the founding institutions of the Hartford- Springfield regional economic and cultural partnership alliance known as New England's Knowledge Corridor. UConn was the second U.S. university i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Property
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replacement for well-formed formula, expressions in Formal proof, logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the Operation (mathematics), operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |