Electromagnetic Wave Equation
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field or the magnetic field , takes the form: \begin \left(v_^2\nabla^2 - \frac \right) \mathbf &= \mathbf \\ \left(v_^2\nabla^2 - \frac \right) \mathbf &= \mathbf \end where v_ = \frac is the speed of light (i.e. phase velocity) in a medium with permeability , and permittivity , and is the Laplace operator. In a vacuum, , a fundamental physical constant. The electromagnetic wave equation derives from Maxwell's equations. In most older literature, is called the ''magnetic flux density'' or ''magnetic induction''. The following equations\begin \nabla \cdot \mathbf &= 0\\ \nabla \cdot \mathbf &= 0 \endpredicate that any electromagnetic wave must be a transverse wave, wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
D'Alembert Operator
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: \Box), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (''cf''. nabla symbol) is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert. In Minkowski space, in standard coordinates , it has the form : \begin \Box & = \partial^\mu \partial_\mu = \eta^ \partial_\nu \partial_\mu = \frac \frac - \frac - \frac - \frac \\ & = \frac - \nabla^2 = \frac - \Delta ~~. \end Here \nabla^2 := \Delta is the 3-dimensional Laplacian and is the inverse Minkowski metric with :\eta_ = 1, \eta_ = \eta_ = \eta_ = -1, \eta_ = 0 for \mu \neq \nu. Note that the and summation indices range from 0 to 3: see Einstein notation. (Some authors alternatively use the negative metric signature of , with \eta_ = -1,\; \eta_ = \eta_ = \eta_ = 1.) Lorentz transformations leave the Mi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorenz Gauge Condition
In electromagnetism, the Lorenz gauge condition or Lorenz gauge (after Ludvig Lorenz) is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The Lorenz gauge condition does not completely determine the gauge: one can still make a gauge transformation A^\mu \mapsto A^\mu + \partial^\mu f, where \partial^\mu is the four-gradient and f is any harmonic scalar function: that is, a scalar function obeying \partial_\mu\partial^\mu f = 0, the equation of a massless scalar field. The Lorenz gauge condition is used to eliminate the redundant spin-0 component in Maxwell's equations when these are used to describe a massless spin-1 quantum field. It is also used for massive spin-1 fields where the concept of gauge transformations does not apply at all. Description In electromagnetism, the Lorenz c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electromagnetic Four-potential
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, As measured in a given frame of reference, and for a given gauge, the first component of the electromagnetic four-potential is conventionally taken to be the electric scalar potential, and the other three components make up the magnetic vector potential. While both the scalar and vector potential depend upon the frame, the electromagnetic four-potential is Lorentz covariant. Like other potentials, many different electromagnetic four-potentials correspond to the same electromagnetic field, depending upon the choice of gauge. This article uses tensor index notation and the Minkowski metric sign convention . See also covariance and contravariance of vectors and raising and lowe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariance And Contravariance Of Vectors
In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. Briefly, a contravariant vector is a list of numbers that transforms oppositely to a change of basis, and a covariant vector is a list of numbers that transforms in the same way. Contravariant vectors are often just called ''vectors'' and covariant vectors are called ''covectors'' or ''dual vectors''. The terms ''covariant'' and ''contravariant'' were introduced by James Joseph Sylvester in 1851. Curvilinear coordinate systems, such as cylindrical coordinates, cylindrical or spherical coordinates, are often used in physical and geometric problems. Associated with any coordinate system is a natural choice of coordinate basis for vectors based at each point of the space, and covariance and contravariance are particularly important for understanding how the coordinate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formulation Of Maxwell's Equations In Special Relativity
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems. Covariant objects Preliminary four-vectors Lorentz tensors of the following kinds may be used in this article to describe bodies or particles: * four-displacement: x^\alpha = (ct, \mathbf) = (ct, x, y, z) \,. * Four-velocity: u^\alpha = \gamma(c,\mathbf) , where ''γ''(u) is the Lorentz factor at the 3- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Dilation02
Time is the continuous progression of existence that occurs in an apparently irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events (or the intervals between them), and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions. Time is one of the seven fundamental physical quantities in both the International System of Units (SI) and International System of Quantities. The SI base unit of time is the second, which is defined by measuring the electronic transition frequency of caesium atoms. General relativity is the primary framework for understanding how spacetime works. Through advances in both theoretical and experimental investigations of spacetime, it has been shown that time can be distorted and dilated, particula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dyadics
In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a ''dyadic'' in this context. A dyadic can be used to contain physical or geometric information, although in general there is no direct way of geometrically interpreting it. The dyadic product is distributive over vector addition, and associative with scalar multiplication. Therefore, the dyadic product is linear in both of its operands. In general, two dyadics can be added to get another dyadic, and multiplied by numbers to scale the dyadic. However, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Calculus Identities
The following are important identities involving derivatives and integrals in vector calculus. Operator notation Gradient For a function f(x, y, z) in three-dimensional Cartesian coordinate variables, the gradient is the vector field: : \operatorname(f) = \nabla f = \begin\displaystyle \frac,\ \frac,\ \frac \end f = \frac \mathbf + \frac \mathbf + \frac \mathbf where i, j, k are the standard unit vectors for the ''x'', ''y'', ''z''-axes. More generally, for a function of ''n'' variables \psi(x_1, \ldots, x_n), also called a scalar field, the gradient is the vector field: \nabla\psi = \begin\displaystyle\frac, \ldots, \frac \end\psi = \frac \mathbf_1 + \dots + \frac\mathbf_n where \mathbf_ \, (i=1,2,..., n) are mutually orthogonal unit vectors. As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change. For a vector field \mathbf = \left(A_1, \ldots, A_n\right), also called a tensor fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curl (mathematics)
In vector calculus, the curl, also known as rotor, is a vector operator that describes the Differential (infinitesimal), infinitesimal Circulation (physics), circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector (geometry), vector whose length and direction denote the Magnitude (mathematics), magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field. A vector field whose curl is zero is called irrotational. The curl is a form of derivative, differentiation for vector fields. The corresponding form of the fundamental theorem of calculus is Kelvin–Stokes theorem, Stokes' theorem, which relates the surface integral of the curl of a vector field to the line integral of the vector field around the boundary curve. The notation is more common in North America. In the rest of the world, particularly in 20th century scientific li ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |