HOME
*





Double Tangent Bundle
In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle of the total space ''TM'' of the tangent bundle of a smooth manifold ''M'' . A note on notation: in this article, we denote projection maps by their domains, e.g., ''π''''TTM'' : ''TTM'' → ''TM''. Some authors index these maps by their ranges instead, so for them, that map would be written ''π''''TM''. The second tangent bundle arises in the study of connections and second order ordinary differential equations, i.e., (semi)spray structures on smooth manifolds, and it is not to be confused with the second order jet bundle. Secondary vector bundle structure and canonical flip Since is a vector bundle in its own right, its tangent bundle has the secondary vector bundle structure where is the push-forward of the canonical projection In the following we denote : \xi = \xi^k\frac\Big, _x\in T_xM, \qquad X = X^k\frac\Big, _x\in T_xM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the ''geometric'' properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology. The central goal of the field of differential topology is the classification of all smooth manifolds up to diffeomorphism. Since dimension is an invariant of smooth manifolds up to diffeomorphism type, this classification is often studied by classifying the ( connected) manifolds in each dimension separately: * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tangent Bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of manifold the tangent spaces and have no common vector. This is graphically illustrated in the accompanying picture for tangent bundle of circle , see Examples section: all tangents to a circle lie in the plane of the circle. In order to make them disjoint it is necessary to align them in a plane perpendicular to the plane of the circle. of the tangent spaces of M . That is, : \begin TM &= \bigsqcup_ T_xM \\ &= \bigcup_ \left\ \times T_xM \\ &= \bigcup_ \left\ \\ &= \left\ \end where T_x M denotes the tangent space to M at the point x . So, an element of TM can be thought of as a pair (x,v), where x is a point in M and v is a tangent vector to M at x . There is a natural projection : \pi : TM \t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differentiable Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connection (vector Bundle)
In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a ''covariant derivative'', an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear. Linear connections are also called Koszul connections after Jean-Louis Koszul, who ga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spray (mathematics)
In differential geometry, a spray is a vector field ''H'' on the tangent bundle ''TM'' that encodes a quasilinear second order system of ordinary differential equations on the base manifold ''M''. Usually a spray is required to be homogeneous in the sense that its integral curves ''t''→ΦHt(ξ)∈''TM'' obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive reparameterizations. If this requirement is dropped, ''H'' is called a semispray. Sprays arise naturally in Riemannian and Finsler geometry as the geodesic sprays whose integral curves are precisely the tangent curves of locally length minimizing curves. Semisprays arise naturally as the extremal curves of action integrals in Lagrangian mechanics. Generalizing all these examples, any (possibly nonlinear) connection on ''M'' induces a semispray ''H'', and conversely, any semispray ''H'' induces a torsion-free nonlinear connection on ''M''. If the original connection is torsion-free it coincides with the connection induced by ''H' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jet Bundle
In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing ''geometrically'' with higher derivatives, by imposing differential form conditions on newly introduced formal variables. Jet bundles are sometimes called sprays, although sprays usually refer more specifically to the associated vector field induced on the corresponding bundle (e.g., the geodesic spray on Finsler manifolds.) Since the early 1980s, jet bundles have appeared as a concise way to describe phenomena associated with the derivatives of maps, particularly those associated with the calculus of variations. Co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secondary Vector Bundle Structure
In mathematics, particularly differential topology, the secondary vector bundle structure refers to the natural vector bundle structure on the total space ''TE'' of the tangent bundle of a smooth vector bundle , induced by the push-forward of the original projection map . This gives rise to a double vector bundle structure . In the special case , where is the double tangent bundle, the secondary vector bundle is isomorphic to the tangent bundle of through the canonical flip. Construction of the secondary vector bundle structure Let be a smooth vector bundle of rank . Then the preimage of any tangent vector in in the push-forward of the canonical projection is a smooth submanifold of dimension , and it becomes a vector space with the push-forwards : +_*:T(E\times E)\to TE, \qquad \lambda_*:TE\to TE of the original addition and scalar multiplication :+:E\times E\to E, \qquad \lambda:E\to E as its vector space operations. The triple becomes a smooth vector bund ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Double Vector Bundle
In mathematics, a double vector bundle is the combination of two compatible vector bundle structures, which contains in particular the tangent TE of a vector bundle E and the double tangent bundle T^2M. Definition and first consequences A double vector bundle consists of (E, E^H, E^V, B), where # the ''side bundles'' E^H and E^V are vector bundles over the base B, # E is a vector bundle on both side bundles E^H and E^V, # the projection, the addition, the scalar multiplication and the zero map on ''E'' for both vector bundle structures are morphisms. Double vector bundle morphism A double vector bundle morphism (f_E, f_H, f_V, f_B) consists of maps f_E : E \mapsto E', f_H : E^H \mapsto E^H', f_V : E^V \mapsto E^V' and f_B : B \mapsto B' such that (f_E, f_V) is a bundle morphism from (E, E^V) to (E', E^V'), (f_E, f_H) is a bundle morphism from (E, E^H) to (E', E^H'), (f_V, f_B) is a bundle morphism from (E^V, B) to (E^V', B') and (f_H, f_B) is a bundle morphism from (E^H, B) to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spray (mathematics)
In differential geometry, a spray is a vector field ''H'' on the tangent bundle ''TM'' that encodes a quasilinear second order system of ordinary differential equations on the base manifold ''M''. Usually a spray is required to be homogeneous in the sense that its integral curves ''t''→ΦHt(ξ)∈''TM'' obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive reparameterizations. If this requirement is dropped, ''H'' is called a semispray. Sprays arise naturally in Riemannian and Finsler geometry as the geodesic sprays whose integral curves are precisely the tangent curves of locally length minimizing curves. Semisprays arise naturally as the extremal curves of action integrals in Lagrangian mechanics. Generalizing all these examples, any (possibly nonlinear) connection on ''M'' induces a semispray ''H'', and conversely, any semispray ''H'' induces a torsion-free nonlinear connection on ''M''. If the original connection is torsion-free it coincides with the connection induced by ''H' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parametrization (geometry)
In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. "To parameterize" by itself means "to express in terms of parameters". Parametrization is a mathematical process consisting of expressing the state of a system, process or model as a function of some independent quantities called parameters. The state of the system is generally determined by a finite set of coordinates, and the parametrization thus consists of one function of several real variables for each coordinate. The number of parameters is the number of degrees of freedom of the system. For example, the position of a point that moves on a curve in three-dimensional space is determined by the time needed to reach the point when starting from a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]