HOME
*





Dimension (linear Algebra)
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is finite, and if its dimension is infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The complex numbers \Complex are both a real and complex vector space; we ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rank–nullity Theorem
The rank–nullity theorem is a theorem in linear algebra, which asserts that the dimension of the domain of a linear map is the sum of its rank (the dimension of its image) and its ''nullity'' (the dimension of its kernel). p. 70, §2.1, Theorem 2.3 Stating the theorem Let T : V \to W be a linear transformation between two vector spaces where T's domain V is finite dimensional. Then \operatorname(T) ~+~ \operatorname(T) ~=~ \dim V, where \operatorname(T) ~:=~ \dim(\operatorname(T)) \qquad \text \qquad \operatorname(T) ~:=~ \dim(\operatorname (T)). In other words, \dim (\operatorname T) + \dim (\ker T) = \dim (\operatorname T). This theorem can be refined via the splitting lemma to be a statement about an isomorphism of spaces, not just dimensions. Explicitly, since induces an isomorphism from V / \operatorname (T) to \operatorname (T), the existence of a basis for that extends any given basis of \operatorname(T) implies, via the splitting lemma, that \operatorname(T) \oplu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Counit
In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions ( see below). Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes). There are also F-coalgebras, with important applications in computer science. Informal discussion One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Operator
Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an American slasher film * ''Identity'' (game show), an American game show * ''Identity'' (TV series), a British police procedural drama television series * "Identity" (''Arrow''), a 2013 episode * "Identity" (''Burn Notice''), a 2007 episode * "Identity" (''Charlie Jade''), a 2005 episode * "Identity" (''Legend of the Seeker''), a 2008 episode * "Identity" (''Law & Order: Special Victims Unit'' episode), 2005 * "Identity" (''NCIS: Los Angeles''), a 2009 pilot episode Music Albums * ''Identity'' (3T album), 2004 * ''Identity'' (BoA album), 2010 * ''Identity'' (Far East Movement album), 2016 * ''Identity'' (Robert Pierre album), 2008 * ''Identity'' (Raghav album), 2008 * ''Identity'' (Victon EP), 2017 * ''Identity'' ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wolfgang Krull
Wolfgang Krull (26 August 1899 – 12 April 1971) was a German mathematician who made fundamental contributions to commutative algebra, introducing concepts that are now central to the subject. Krull was born and went to school in Baden-Baden. He attended the Universities of Freiburg, Rostock and finally Göttingen from 1919–1921, where he earned his doctorate under Alfred Loewy. He worked as an instructor and professor at Freiburg, then spent a decade at the University of Erlangen. In 1939 Krull moved to become chair at the University of Bonn, where he remained for the rest of his life. Wolfgang Krull was a member of the Nazi Party. His 35 doctoral students include Wilfried Brauer, Karl-Otto Stöhr and Jürgen Neukirch. See also * Cohen structure theorem * Jacobson ring * Local ring * Prime ideal * Real algebraic geometry * Regular local ring * Valuation ring * Krull dimension * Krull ring * Krull topology In mathematics, a profinite group is a topological group that is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (algebra)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krull Dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of them coinci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank Of An Abelian Group
In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group ''A'' is the cardinality of a maximal linearly independent subset. The rank of ''A'' determines the size of the largest free abelian group contained in ''A''. If ''A'' is torsion-free then it embeds into a vector space over the rational numbers of dimension rank ''A''. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved. The term rank has a different meaning in the context of elementary abelian groups. Definition A subset of an abelian group ''A'' is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial: if : \sum_\alpha n_\alpha a_\alpha = 0, \quad n_\alpha\in\mathbb, where all but finitely many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Length Of A Module
In abstract algebra, the length of a module is a generalization of the dimension of a vector space which measures its size. page 153 In particular, as in the case of vector spaces, the only modules of finite length are finitely generated modules. It is defined to be the length of the longest chain of submodules. Modules with ''finite'' length share many important properties with finite-dimensional vector spaces. Other concepts used to 'count' in ring and module theory are depth and height; these are both somewhat more subtle to define. Moreover, their use is more aligned with dimension theory whereas length is used to analyze finite modules. There are also various ideas of ''dimension'' that are useful. Finite length commutative rings play an essential role in functorial treatments of formal algebraic geometry and deformation theory where Artin rings are used extensively. Definition Length of a module Let M be a (left or right) module over some ring R. Given a chain of subm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]