Differentiability Class
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a Cinfinity function (or C^ function). Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an open set U on the real line and a function f defined on U with real values. Let ''k'' be a nonnegative integer. The function f is said to be of differentiability class ''C^k'' if the derivatives f',f'',\dots,f^ exist and are continuous on U. If f is k ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bump2D Illustration
Bump or Bumps may refer to: * A collision or impact * A raised protrusion on the skin such as a pimple, goose bump, prayer bump, lie bumps, etc. Infrastructure and industry * Coal mine bump, a seismic jolt occurring within a mine * Bump (union), in a unionised work environment, a reassignment of jobs on the basis of seniority * Bumper music or bump, in radio broadcasting a short clip of music used for transitions between program elements * Bump, airline travel slang for the involuntary denial of boarding to passengers on an overbooked flight Arts and entertainment * Bump (dance), a dance from the 1970s disco era * ''BUMP'' (comics), 20078 limited edition comic book series Music * "The Bump", a funky song by the Commodores from ''Machine Gun''(1974) * "The Bump", a 1974 hit single by the band Kenny * ''Bump'' (album), a jazz album recorded by musician John Scofield in 2000 * "Bump", a song by RavenSymoné from '' This Is My Time'' * "Bump", a song by Fun Lovin' Crimi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Recursion
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references ("crock recursion") can occur. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ''ancestor''. One's an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Fréchet Derivative
In mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a realvalued function of a single real variable to the case of a vectorvalued function of multiple real variables, and to define the functional derivative used widely in the calculus of variations. Generally, it extends the idea of the derivative from realvalued functions of one real variable to functions on normed spaces. The Fréchet derivative should be contrasted to the more general Gateaux derivative which is a generalization of the classical directional derivative. The Fréchet derivative has applications to nonlinear problems throughout mathematical analysis and physical sciences, particularly to the calculus of variations and much of nonlinear analysis and nonlinear functional analysis. Definition Let V and W be normed vector spaces, and U\subseteq V be an open subset of V. A function f : U \to W is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Partial Derivatives
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Partial derivatives are used in vector calculus and differential geometry. The partial derivative of a function f(x, y, \dots) with respect to the variable x is variously denoted by It can be thought of as the rate of change of the function in the xdirection. Sometimes, for z=f(x, y, \ldots), the partial derivative of z with respect to x is denoted as \tfrac. Since a partial derivative generally has the same arguments as the original function, its functional dependence is sometimes explicitly signified by the notation, such as in: :f'_x(x, y, \ldots), \frac (x, y, \ldots). The symbol used to denote partial derivatives is ∂. One of the first known uses of this symbol in mathematics is by Marquis de Condorcet from 1770, who used it for ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Compact Support
In mathematics, the support of a realvalued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a realvalued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is nonzero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bump Function
In mathematics, a bump function (also called a test function) is a function f: \R^n \to \R on a Euclidean space \R^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain \R^n forms a vector space, denoted \mathrm^\infty_0(\R^n) or \mathrm^\infty_\mathrm(\R^n). The dual space of this space endowed with a suitable topology is the space of distributions. Examples The function \Psi:\R \to \R given by \Psi(x) = \begin \exp\left( \frac\right), & x \in (1,1) \\ 0, & \text \end is an example of a bump function in one dimension. It is clear from the construction that this function has compact support, since a function of the real line has compact support if and only if it has bounded closed support. The proof of smoothness follows along the same lines as for the related function discussed in the Nonanalytic smooth function article. This function can be interpreted as the Gaussian ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Trigonometric Functions
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a rightangled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis. The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding inverse function, and an analog among the hyperbolic functions. The oldest definitions of trigonometric functions, related to rightangle triangles, define them only for acute angles. To extend the sine an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Trigonometric Function
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a rightangled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis. The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding inverse function, and an analog among the hyperbolic functions. The oldest definitions of trigonometric functions, related to rightangle triangles, define them only for acute angles. To extend the sine ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Exponential Function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positivevalued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics". The exponential function satisfies the exponentiation identity e^ = e^x e^y \text x,y\in\mathbb, which, along with the definition e = \exp(1), shows that e^n=\underbrace_ for positi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lipschitz Continuous
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixedpoint theorem. We have the following chain of strict inc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and \infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mollifier Illustration
In mathematics, mollifiers (also known as ''approximations to the identity'') are smooth functions with special properties, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a function which is rather irregular, by convolving it with a mollifier the function gets "mollified", that is, its sharp features are smoothed, while still remaining close to the original nonsmooth (generalized) function. They are also known as Friedrichs mollifiers after Kurt Otto Friedrichs, who introduced them. Historical notes Mollifiers were introduced by Kurt Otto Friedrichs in his paper , which is considered a watershed in the modern theory of partial differential equations.See the commentary of Peter Lax on the paper in . The name of this mathematical object had a curious genesis, and Peter Lax tells the whole story in his commentary on that paper published in Friedrichs' "''Selec ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 