Dudley's Theorem
In probability theory, Dudley's theorem is a result relating the expected upper bound and regularity properties of a Gaussian process to its entropy and covariance structure. History The result was first stated and proved by V. N. Sudakov, as pointed out in a paper by Richard M. Dudley. Dudley had earlier credited Volker Strassen Volker Strassen (born April 29, 1936) is a German mathematician, a professor emeritus in the department of mathematics and statistics at the University of Konstanz. For important contributions to the analysis of algorithms he has received many aw ... with making the connection between entropy and regularity. Statement Let (''X''''t'')''t''∈''T'' be a Gaussian process and let ''d''''X'' be the pseudometric on ''T'' defined by :d_(s, t) = \sqrt. \, For ''ε'' > 0, denote by ''N''(''T'', ''d''''X''; ''ε'') the entropy number, i.e. the minimal number of (open) ''d''''X''-balls of radius ''ε'' required to cover ''T''. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Expected Value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with also often stylized as or \mathbb. History The idea of the expected value originated in the middle of the 17th century from the study of the so-called problem of points, which seeks to divide the stakes ''in a fair way'' between two players, who have to e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upper Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that . Every subset of the natural numbers has a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Stochastic Process
In probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze. It is implicit here that the index of the stochastic process is a continuous variable. Some authorsDodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. (Entry for "continuous process") define a "continuous (stochastic) process" as only requiring that the index variable be continuous, without continuity of sample paths: in some terminology, this would be a continuous-time stochastic process, in parallel to a "discrete-time process". Given the possible confusion, caution is needed. Definitions Let (Ω, Σ, P) be a probability space, let ''T'' be some interval of time, and let ''X'' : ''T'' ×&n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Process
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space. The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based on the notion of the Gaussian distribution (normal distribution). Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions. Gaussian processes are useful in statistical modelling, benefiting from properties inherited from the normal distribution. For example, if a random process is modelled as a Gaussian process, the distribu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entropy
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change, and information systems including the transmission of information in telecommunication. The thermodynamic concept was referred to by Scottish scientist and engineer William Rankine in 1850 with the names ''thermodynamic function'' and ''heat-potential''. In 1865, German physicist Rudolf Clausius, one of the leading founders of the field of thermodynamics, defined it as the quotient of an infinitesimal amount ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative. The sign of the covariance therefore shows the tendency in the linear relationship between the variables. The magnitude of the covariance is not easy to interpret because it is not normalized and hence depends on the magnitudes of the variables. The normalized version of the covariance, the correlation coefficient, however, shows by its magnitude the strength of the linear relation. A distinction must be made between (1) the covariance of two ran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard M
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include " Richie", " Dick", " Dickon", " Dickie", " Rich", " Rick", " Rico", " Ricky", and more. Richard is a common English, German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Catalan "Ricard" and the Italian "Riccardo", among others (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Andersen (other) * Richard Anderson (other) * Richard Cartwright (disambigu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Volker Strassen
Volker Strassen (born April 29, 1936) is a German mathematician, a professor emeritus in the department of mathematics and statistics at the University of Konstanz. For important contributions to the analysis of algorithms he has received many awards, including the Cantor medal, the Konrad Zuse Medal, the Paris Kanellakis Award for work on randomized primality testing, the Knuth Prize for "seminal and influential contributions to the design and analysis of efficient algorithms." Biography Strassen was born on April 29, 1936, in Düsseldorf-Gerresheim.. After studying music, philosophy, physics, and mathematics at several German universities, he received his Ph.D. in mathematics in 1962 from the University of Göttingen under the supervision of . He then took a position in the department of statistics at the University of California, Berkeley while performing his habilitation at the University of Erlangen-Nuremberg, where Jacobs had since moved. In 1968, Strassen moved to the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudometric Space
In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis. When a topology is generated using a family of pseudometrics, the space is called a gauge space. Definition A pseudometric space (X,d) is a set X together with a non-negative real-valued function d : X \times X \longrightarrow \R_, called a , such that for every x, y, z \in X, #d(x,x) = 0. #''Symmetry'': d(x,y) = d(y,x) #'' Subadditivity''/''Triangle inequality'': d(x,z) \leq d(x,y) + d(y,z) Unlike a metric space, points in a pseudometric space need not be distinguishable; that is, one may have d(x, y) = 0 for distinct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entropy Number
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change, and information systems including the transmission of information in telecommunication. The thermodynamic concept was referred to by Scottish scientist and engineer William Rankine in 1850 with the names ''thermodynamic function'' and ''heat-potential''. In 1865, German physicist Rudolf Clausius, one of the leading founders of the field of thermodynamics, defined it as the quotient of an infinitesimal amount of hea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |