Discrete Laplace Operator
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a Graph (discrete mathematics), graph or a lattice (group), discrete grid. For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix. The discrete Laplace operator occurs in physics problems such as the Ising model and loop quantum gravity, as well as in the study of discrete dynamical systems. It is also used in numerical analysis as a stand-in for the continuous Laplace operator. Common applications include image processing, where it is known as the Laplace filter, and in machine learning for cluster analysis, clustering and semi-supervised learning on neighborhood graphs. Definitions Graph Laplacians There are various definitions of the ''discrete Laplacian'' for Graph (discrete mathematics), graphs, differing by sign and scale factor (sometim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Laplace Operator
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a Scalar field, scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the Del, nabla operator), or \Delta. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical coordinates, cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian of a function at a point measures by how much the average value of over small spheres or balls centered at deviates from . The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distributio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Element Method
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved and are often required to solve the largest and most complex problems. FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems). There are also studies about using FEM to solve high-dimensional problems. To solve a problem, FEM subdivides a large system into smaller, simpler parts called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kronecker Sum Of Discrete Laplacians
In mathematics, the Kronecker sum of discrete Laplacians, named after Leopold Kronecker, is a discrete version of the separation of variables for the continuous Laplacian in a rectangular cuboid domain. General form of the Kronecker sum of discrete Laplacians In a general situation of the separation of variables in the discrete case, the multidimensional discrete Laplacian is a Kronecker sum of 1D discrete Laplacians. Example: 2D discrete Laplacian on a regular grid with the homogeneous Dirichlet boundary condition Mathematically, using the Kronecker sum: :L =\mathbf\otimes\mathbf+\mathbf\otimes\mathbf, \, where \mathbf and \mathbf are 1D discrete Laplacians in the ''x''- and ''y''-directions, correspondingly, and \mathbf are the identities of appropriate sizes. Both \mathbf and \mathbf must correspond to the case of the homogeneous Dirichlet boundary condition at end points of the ''x''- and ''y''-intervals, in order to generate the 2D discrete Laplacian ''L'' corres ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kronecker Product
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product. The Kronecker product is named after the German mathematician Leopold Kronecker (1823–1891), even though there is little evidence that he was the first to define and use it. The Kronecker product has also been called the ''Zehfuss matrix'', and the ''Zehfuss product'', after , who in 1858 described this matrix operation, but Kronecker product is currently the most widely used term. The misattribution to Kronecker rather than Zehfuss wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Grid
A regular grid is a tessellation of ''n''-dimensional Euclidean space by Congruence_(geometry), congruent parallelepiped#Parallelotope, parallelotopes (e.g. bricks). Its opposite is Unstructured grid, irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. Each cell in the grid can be addressed by index (i, j) in two dimensions or (i, j, k) in three dimensions, and each vertex (geometry), vertex has coordinates (i\cdot dx, j\cdot dy) in 2D or (i\cdot dx, j\cdot dy, k\cdot dz) in 3D for some real numbers ''dx'', ''dy'', and ''dz'' representing the g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cuboid
In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six Face (geometry), faces; it has eight Vertex (geometry), vertices and twelve Edge (geometry), edges. A ''rectangular cuboid'' (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube", in the sense of a Convex polyhedron, convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the Dihedral angle, angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. Along with the rectangular cuboids, ''parallelepiped'' is a cuboid with six parallelogram faces. ''Rhombohedron'' is a cuboid with six rhombus faces. A ''square fr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet Boundary Condition
In mathematics, the Dirichlet boundary condition is imposed on an ordinary or partial differential equation, such that the values that the solution takes along the boundary of the domain are fixed. The question of finding solutions to such equations is known as the Dirichlet problem. In the sciences and engineering, a Dirichlet boundary condition may also be referred to as a fixed boundary condition or boundary condition of the first type. It is named after Peter Gustav Lejeune Dirichlet (1805–1859). In finite-element analysis, the ''essential'' or Dirichlet boundary condition is defined by weighted-integral form of a differential equation. The dependent unknown ''u in the same form as the weight function w'' appearing in the boundary expression is termed a ''primary variable'', and its specification constitutes the ''essential'' or Dirichlet boundary condition. Examples ODE For an ordinary differential equation, for instance, y'' + y = 0, the Dirichlet boundary conditions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neumann Boundary Condition
In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain. It is possible to describe the problem using other boundary conditions: a Dirichlet boundary condition specifies the values of the solution itself (as opposed to its derivative) on the boundary, whereas the Cauchy boundary condition, mixed boundary condition and Robin boundary condition are all different types of combinations of the Neumann and Dirichlet boundary conditions. Examples ODE For an ordinary differential equation, for instance, :y'' + y = 0, the Neumann boundary conditions on the interval take the form :y'(a)= \alpha, \quad y'(b) = \beta, where and are given numbers. PDE For a partial differential equation, for instance, :\nabla^2 y + y = 0, where denotes the Laplace operat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Lattice
In mathematics, the square lattice is a type of lattice in a two-dimensional Euclidean space. It is the two-dimensional version of the integer lattice, denoted as . It is one of the five types of two-dimensional lattices as classified by their symmetry groups; its symmetry group in IUC notation as , Coxeter notation as , and orbifold notation as . Two orientations of an image of the lattice are by far the most common. They can conveniently be referred to as the upright square lattice and diagonal square lattice; the latter is also called the centered square lattice.. They differ by an angle of 45°. This is related to the fact that a square lattice can be partitioned into two square sub-lattices, as is evident in the colouring of a checkerboard. Symmetry The square lattice's symmetry category is wallpaper group . A pattern with this lattice of translational symmetry cannot have more, but may have less symmetry than the lattice itself. An upright square lattice can be vi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Five-point Stencil
In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors". It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation. In one dimension In one dimension, if the spacing between points in the grid is ''h'', then the five-point stencil of a point ''x'' in the grid is : \. 1D first derivative The first derivative of a function ''f'' of a real variable at a point ''x'' can be approximated using a five-point stencil as: :f'(x) \approx \frac The center point ''f''(''x'') itself is not involved, only the four neighboring points. Derivation This formula can be obtained by writing out the four Taylor series of f(x \pm h) and f(x \pm 2h) at the point a, up to terms of ''h''3 (or up to terms of ''h''5 to get an error estimation as well), evaluating each series at a = x \mp h and a = x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite-element Method
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved and are often required to solve the largest and most complex problems. FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems). There are also studies about using FEM to solve high-dimensional problems. To solve a problem, FEM subdivides a large system into smaller, simpler parts called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numeri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite-difference Method
In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time domain (if applicable) are discretized, or broken into a finite number of intervals, and the values of the solution at the end points of the intervals are approximated by solving algebraic equations containing finite differences and values from nearby points. Finite difference methods convert ordinary differential equations (ODE) or partial differential equations (PDE), which may be nonlinear, into a system of linear equations that can be solved by matrix algebra techniques. Modern computers can perform these linear algebra computations efficiently, and this, along with their relative ease of implementation, has led to the widespread use of FDM in modern numerical analysis. Today, FDMs are one of the most common approaches to the numerical solution of PDE, along wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |