Diagnostic Equation
In a physical (and especially geophysical) simulation context, a diagnostic equation (or diagnostic model) is an equation (or model) that links the values of these variables simultaneously, either because the equation (or model) is time-independent, or because the variables all refer to the values they have at the identical time. This is by opposition to a prognostic equation. For instance, the so-called ideal gas law (''PV'' = ''nRT'') of classical thermodynamics relates the state variables of that gas, all estimated at the same time. It is understood that the values of any one of these variables can change in time, but the relation between these variables will remain valid at each and every particular instant, which implies that one variable cannot change its value without the value of another variable also being affected. References * James R. Holton (2004) ''An Introduction to Dynamic Meteorology'', Academic Press, International Geophysics Series Volume 88, Fourth Edition, 535 p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prognostic Equation
Prognosis (Greek: πρόγνωσις "fore-knowing, foreseeing"; : prognoses) is a medical term for predicting the likelihood or expected development of a disease, including whether the signs and symptoms will improve or worsen (and how quickly) or remain stable over time; expectations of quality of life, such as the ability to carry out daily activities; the potential for complications and associated health issues; and the likelihood of survival (including life expectancy). A prognosis is made on the basis of the normal course of the diagnosed disease, the individual's physical and mental condition, the available treatments, and additional factors. A complete prognosis includes the expected duration, function, and description of the course of the disease, such as progressive decline, intermittent crisis, or sudden, unpredictable crisis. When applied to large statistical populations, prognostic estimates can be very accurate: for example the statement "45% of patients with severe s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Gas Law
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form: pV = nRT where p, V and T are the pressure, volume and Thermodynamic temperature, temperature respectively; n is the amount of substance; and R is the ideal gas constant. It can also be derived from the microscopic kinetic theory of gases, kinetic theory, as was achieved (independently) by August Krönig in 1856 and Rudolf Clausius in 1857. Equation The state function, state of an amount of gas is determined by its pressure, volume, and temperature. The modern form of the equation relates these simply in two main forms. The temperature us ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermodynamics
Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantity, physical quantities but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to various topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering, and mechanical engineering, as well as other complex fields such as meteorology. Historically, thermodynamics developed out of a desire to increase the thermodynamic efficiency, efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot, Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
State Variable
A state variable is one of the set of Variable (mathematics), variables that are used to describe the mathematical "state" of a dynamical system. Intuitively, the state of a system describes enough about the system to determine its future behaviour in the absence of any external forces affecting the system. Models that consist of coupled first-order differential equations are said to be in state-variable form. Examples *In mechanics, mechanical systems, the position coordinates and Velocity, velocities of mechanical parts are typical state variables; knowing these, it is possible to determine the future state of the objects in the system. *In thermodynamics, a state variable is an independent variable of a state function. Examples include internal energy, enthalpy, thermodynamic temperature, temperature, pressure, volume and entropy. Heat and Work (Thermodynamics), work are not state functions, but process functions. *In electronics, electronic/electrical circuits, the voltages ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Meteorological Society
The American Meteorological Society (AMS) is a scientific and professional organization in the United States promoting and disseminating information about the atmospheric, oceanic, and hydrologic sciences. Its mission is to advance the atmospheric and related sciences, technologies, specifications, applications and services for the benefit of society. Background Founded on December 29, 1919, by Charles F. Brooks, at a meeting of the American Association for the Advancement of Science in St. Louis, and incorporated on January 21, 1920, the American Meteorological Society has a membership of more than 13,000 weather, water, and climate scientists, professionals, researchers, educators, students, and enthusiasts. AMS publishes 12 atmospheric and related oceanic and hydrologic journals (in print and online), sponsors as many as twelve conferences annually, and administers professional certification programs and awards. The AMS Policy and Education programs promote scientific kn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |