Delzant Polytope
   HOME





Delzant Polytope
In mathematics, a Delzant polytope is a convex polytope in \mathbb^n such that for each vertex v, exactly n edges meet at v (that is, it is a simple polytope), and there are integer vectors parallel to these edges forming a \mathbb-basis of \mathbb^n. Delzant's theorem, introduced by , classifies effective Hamiltonian torus actions on compact connected symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...s by the image of the associated moment map, which is a Delzant polytope. The theorem states that there is a bijective correspondence between symplectic toric manifolds (up to torus-equivariant symplectomorphism) and ''Delzant polytopes''. More precisely, the moment polytope of every symplectic toric manifold is a Delzant polytope, every Delzant polytope is the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Polytope
In geometry, a -dimensional simple polytope is a -dimensional polytope each of whose vertices are adjacent to exactly edges (also facets). The vertex figure of a simple -polytope is a -simplex. Simple polytopes are topologically dual to simplicial polytopes. The family of polytopes which are both simple and simplicial are simplices or two-dimensional polygons. A ''simple polyhedron'' is a three-dimensional polyhedron whose vertices are adjacent to three edges and three faces. The dual to a simple polyhedron is a ''simplicial polyhedron'', in which all faces are triangles. Examples Three-dimensional simple polyhedra include the prisms (including the cube), the regular tetrahedron and dodecahedron, and, among the Archimedean solids, the truncated tetrahedron, truncated cube, truncated octahedron, truncated cuboctahedron, truncated dodecahedron, truncated icosahedron, and truncated icosidodecahedron. They also include the Goldberg polyhedra and fullerenes, including the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moment Map
In mathematics, specifically in symplectic geometry, the momentum map (or, by false etymology, moment map) is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums. Formal definition Let M be a manifold with symplectic form ''\omega''. Suppose that a Lie group ''G'' acts on ''M'' via symplectomorphisms (that is, the action of each ''g'' in ''G'' preserves ''\omega''). Let \mathfrak be the Lie algebra of ''G'', \mathfrak^* its dual, and :\langle \, \cdot, \cdot\rangle : \mathfrak^* \times \mathfrak \to \mathbb the pairing between the two. Any ''\xi'' in \mathfrak induces a vector field ''\rho(\xi)'' on ''M'' describing the infinitesimal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symplectic Geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Hermann Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group". "Complex" comes from the Latin ''com-plexus'', meaning "braided together" (co- + plexus), while symplectic comes from the corresponding Greek ''sym-plektikos'' (συμπλεκτικός); in both cases the stem comes from the Indo-European root *pleḱ- The name reflects the deep connections between complex and symplectic structures. By Darboux's theorem, symplectic manifolds are isomorphic to the standard symplectic vector space locally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]