Delta-v
Delta-''v'' (also known as "change in velocity"), symbolized as and pronounced , as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft. A simple example might be the case of a conventional rocket-propelled spacecraft, which achieves thrust by burning fuel. Such a spacecraft's delta-''v'', then, would be the change in velocity that spacecraft can achieve by burning its entire fuel load. Delta-''v'' is produced by reaction engines, such as rocket engines, and is proportional to the thrust per unit mass and the burn time. It is used to determine the mass of propellant required for the given maneuver through the Tsiolkovsky rocket equation. For multiple maneuvers, delta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Delta-v (physics)
Delta-''v'' (also known as "Delta (letter)#Upper case, change in velocity"), symbolized as and pronounced , as used in flight dynamics (spacecraft), spacecraft flight dynamics, is a measure of the impulse (physics), impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar (mathematics), scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft. A simple example might be the case of a conventional rocket-propelled spacecraft, which achieves thrust by burning fuel. Such a spacecraft's delta-''v'', then, would be the change in velocity that spacecraft can achieve by burning its entire fuel load. Delta-''v'' is produced by reaction engines, such as rocket engines, and is proportional to the thrust per unit mass and the burn time. It is used to determine the mass of rocket propellant, pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Delta-v Budget
Delta-''v'' (also known as " change in velocity"), symbolized as and pronounced , as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft. A simple example might be the case of a conventional rocket-propelled spacecraft, which achieves thrust by burning fuel. Such a spacecraft's delta-''v'', then, would be the change in velocity that spacecraft can achieve by burning its entire fuel load. Delta-''v'' is produced by reaction engines, such as rocket engines, and is proportional to the thrust per unit mass and the burn time. It is used to determine the mass of propellant required for the given maneuver through the Tsiolkovsky rocket equation. For multiple maneuvers, delt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reaction Engine
A reaction engine is an engine, engine or motor that produces thrust by expelling reaction mass (reaction propulsion), in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there is an equal, but opposite, reaction force." Examples include jet engines, rocket engines, pump-jets, and more uncommon variations such as Hall effect thrusters, ion drives, mass drivers, and nuclear pulse propulsion. Discovery The discovery of the reaction engine has been attributed to the Romanian inventor Alexandru Ciurcu and to the French journalist . Energy use Propulsive efficiency For all reaction engines that carry on-board propellant (such as rocket engines and electric propulsion drives) some energy must go into accelerating the reaction mass. Every engine wastes some energy, but even assuming 100% efficiency, the engine needs energy amounting to :\begin \frac \end MV_e^2 (where M is the mass of propellent expended and V_e i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Impulsive Maneuver
In spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth, an orbital maneuver is called a ''deep-space maneuver (DSM)''. When a spacecraft is not conducting a maneuver, especially in a transfer orbit, it is said to be ''coasting''. General Rocket equation The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to the conservation of momentum. Delta-v The applied change in velocity of each maneuver is referred to as delta-v (\Delta\mathbf\,). The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rocket Equation
The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the conservation of momentum. It is credited to Konstantin Tsiolkovsky, who independently derived it and published it in 1903,К. Ціолковскій, Изслѣдованіе мировыхъ пространствъ реактивными приборами, 1903 (available onlinhere in a RAR (file format), RARed PDF) although it had been independently derived and published by William Moore (British mathematician), William Moore in 1810, and later published in a separate book in 1813. Robert Goddard also developed it independently in 1912, and Hermann Oberth derived it independently about 1920. The maximum change of velocity of the vehicle, \Delta v (with no external forces act ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Specific Impulse
Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine, such as a rocket engine, rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the ''Impulse (physics), impulse'', i.e. change in momentum, ''per mass'' of propellant. This is equivalent to "thrust per massflow". The resulting unit is equivalent to velocity. If the engine expels mass at a constant exhaust velocity v_e then the thrust will be \mathbf = v_e \frac . If we integrate over time to get the total change in momentum, and then divide by the mass, we see that the specific impulse is equal to the exhaust velocity v_e . In practice, the specific impulse is usually lower than the actual physical exhaust velocity inefficiencies in the rocket, and thus corresponds to an "effective" exhaust velocity. That is, the specific impulse I_ in units of velocity *is defined by* : \mathbf = I_ \frac , where \mathbf is the average thrust. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Maneuver
In spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth, an orbital maneuver is called a ''deep-space maneuver (DSM)''. When a spacecraft is not conducting a maneuver, especially in a transfer orbit, it is said to be ''coasting''. General Rocket equation The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to the conservation of momentum. Delta-v The applied change in velocity of each maneuver is referred to as delta-v (\Delta\mathbf\,). The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gravity Drag
In astrodynamics and rocketry, gravity loss is a measure of the loss in the net performance of a rocket while it is thrusting in a gravitational field. In other words, it is the cost of having to hold the rocket up in a gravity field. Gravity losses depend on the time over which thrust is applied as well the direction the thrust is applied in. Gravity losses as a proportion of delta-v are minimised if maximum thrust is applied for a short time, and by avoiding thrusting directly away from the local gravitational field. During the launch and ascent phase, however, thrust must be applied over a long period with a major component of thrust in the opposite direction to gravity, so gravity losses become significant. For example, to reach a speed of 7.8 km/s in low Earth orbit requires a delta-v of between 9 and 10 km/s. The additional 1.5 to 2 km/s delta-v is due to gravity losses, steering losses and atmospheric drag. Example Consider the simplified case of a vehicle w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Speed
In kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a non-negative scalar quantity. Introduction of the speed/velocity terminology by Prof. Tait, in 1882. The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is the magnitude of ''velocity'' (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph). For air and marine travel, the knot is commonly used. The fastest possible speed at wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Staging (rocketry)
A multistage rocket or step rocket is a launch vehicle that uses two or more rocket ''stages'', each of which contains its own engines and propellant. A ''tandem'' or ''serial'' stage is mounted on top of another stage; a ''parallel'' stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched. By jettisoning stages when they run out of propellant, the mass of the remaining rocket is decreased. Each successive stage can also be optimized for its specific operating conditions, such as decreased atmospheric pressure at higher altitudes. This ''staging'' allows the thrust of the remaining stages to more easily accelerate the rocket to its final velocity and height. In serial or tandem staging schemes, the first stage is at the bottom and is usually the largest, the second stage and subse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spacecraft Propulsion
Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry. Several methods of pragmatic spacecraft propulsion have been developed, each having its own drawbacks and advantages. Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping, while a few use Reaction wheel, momentum wheels for attitude control. Russian and antecedent Soviet bloc satellites have used Spacecraft electric propulsion, electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north–south station-keeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used electric propulsion such as ion thrusters and Hall-effect thrusters. Various technologies ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |