HOME
*



picture info

Cycle Graph (algebra)
In group theory, a subfield of abstract algebra, a group cycle graph illustrates the various cycles of a group and is particularly useful in visualizing the structure of small finite groups. A cycle is the set of powers of a given group element ''a'', where ''an'', the ''n''-th power of an element ''a'' is defined as the product of ''a'' multiplied by itself ''n'' times. The element ''a'' is said to ''generate'' the cycle. In a finite group, some non-zero power of ''a'' must be the group identity, ''e''; the lowest such power is the order of the cycle, the number of distinct elements in it. In a cycle graph, the cycle is represented as a polygon, with the vertices representing the group elements, and the connecting lines indicating that all elements in that polygon are members of the same cycle. Cycles Cycles can overlap, or they can have no element in common but the identity. The cycle graph displays each interesting cycle as a polygon. If ''a'' generates a cycle of order ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also central to public key cryptography. The early history of group theory dates from the 19th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion Group
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the group presentation :\mathrm_8 = \langle \bar,i,j,k \mid \bar^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar \rangle , where ''e'' is the identity element and commutes with the other elements of the group. Another presentation of Q8 is :\mathrm_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^b\rangle. Compared to dihedral group The quaternion group Q8 has the same order as the dihedral group D4, but a different structure, as shown by their Cayley and cycle graphs: In the diagrams for D4, the group elements are marked with their action on a letter F in the defining representation R2. The same cannot be done for Q8, since it has no faithful representation in R2 or R3. D4 can be realized as a subset of the split-quaternions in the same way that Q8 can be viewed as a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a '' generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baby-step Giant-step
In group theory, a branch of mathematics, the baby-step giant-step is a meet-in-the-middle algorithm for computing the discrete logarithm or order of an element in a finite abelian group by Daniel Shanks. The discrete log problem is of fundamental importance to the area of public key cryptography. Many of the most commonly used cryptography systems are based on the assumption that the discrete log is extremely difficult to compute; the more difficult it is, the more security it provides a data transfer. One way to increase the difficulty of the discrete log problem is to base the cryptosystem on a larger group. Theory The algorithm is based on a space–time tradeoff. It is a fairly simple modification of trial multiplication, the naive method of finding discrete logarithms. Given a cyclic group G of order n, a generator \alpha of the group and a group element \beta, the problem is to find an integer x such that : \alpha^x = \beta\,. The baby-step giant-step algorithm is based ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Class Group
In number theory, the ideal class group (or class group) of an algebraic number field is the quotient group where is the group of fractional ideals of the ring of integers of , and is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of . The order of the group, which is finite, is called the class number of . The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]