HOME
*





Coherence Theory (optics)
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics. The theory of partial coherence was awoken in the 1930s due to work by Pieter Hendrik van Cittert and Frits Zernike. Topics in coherence theory * Visibility * Mutual coherence function * Degree of coherence * Self coherence function * Coherence function * Low frequency fluctuations * General interference law * Van Cittert–Zernike theorem * Michelson stellar interferometer * Correlation interferometry * Hanbury–Brown and Twiss effect * Phase-contrast microscope * Pseudothermal light * Englert–Greenberger duality relation * Coherence Collapse See also * Nonclassical light * Optical coherence tomography Optical coherence tomograph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Interference Law
A general officer is an officer of high rank in the armies, and in some nations' air forces, space forces, and marines or naval infantry. In some usages the term "general officer" refers to a rank above colonel."general, adj. and n.". OED Online. March 2021. Oxford University Press. https://www.oed.com/view/Entry/77489?rskey=dCKrg4&result=1 (accessed May 11, 2021) The term ''general'' is used in two ways: as the generic title for all grades of general officer and as a specific rank. It originates in the 16th century, as a shortening of ''captain general'', which rank was taken from Middle French ''capitaine général''. The adjective ''general'' had been affixed to officer designations since the late medieval period to indicate relative superiority or an extended jurisdiction. Today, the title of ''general'' is known in some countries as a four-star rank. However, different countries use different systems of stars or other insignia for senior ranks. It has a NATO rank sca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eugene Hecht
Eugene Hecht (born 2 December 1938 in New York City) is an American physicist and author of a standard work in optics. Hecht studied at New York University (B.S. in E.P. 1960), Rutgers University (M. Sc. 1963), Adelphi University (Ph.D. 1967). During his graduate study he worked at Radio Corporation of America. He became interested in optics in the 1960s and began writing about it in 1970, e.g., polarization. Adelphi University hired Hecht to teach and he became professor in 1978 and he retired in 2021. Hecht challenged the notion of potential energy in 2003. The elusive nature of a universal definition of energy was argued by Hecht in a letter to the editor of ''The Physics Teacher'' in 2004. Then in 2006 he wrote "There is no really good definition of mass". He continued with the topic in 2011 and 2016. Eugene Hecht is also widely published authority on George E. Ohr and American art pottery as well as a founding member of the American Ceramic Arts Society. Books His firs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Coherence Tomography
Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media (e.g., biological tissue). It is used for medical imaging and industrial nondestructive testing (NDT). Optical coherence tomography is based on low-coherence interferometry, typically employing near-infrared light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Confocal microscopy, another optical technique, typically penetrates less deeply into the sample but with higher resolution. Depending on the properties of the light source (superluminescent diodes, ultrashort pulsed lasers, and supercontinuum lasers have been employed), optical coherence tomography has achieved sub-micrometer resolution (with very wide-spectrum sources emitting over a ~100 nm wavelength range). Optical coherence tomography is one of a class of optical to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonclassical Light
Nonclassical light is light that cannot be described using classical electromagnetism; its characteristics are described by the quantized electromagnetic field and quantum mechanics. The most common described forms of nonclassical light are the following: *Photon statistics of Nonclassical Light is Sub-PoissonianM. Fox, ''Quantum Optics: An Introduction'', Oxford University Press, New York, 2006 in the sense that the average number of photons in a photodetection of this kind of light shows a standard deviation that is less than the mean number of the photons. * Squeezed light exhibits reduced noise in one quadrature component. The most familiar kinds of squeezed light have either reduced amplitude noise or reduced phase noise, with increased noise of the other component. *Fock states (also called photon number states) have a well-defined number of photons (stored e.g. in a cavity), while the phase is totally undefined. Glauber–Sudarshan P representation The density matrix for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Coherence Collapse
Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a derived unit that, for a given system of quantities and for a chosen set of base units, is a product of powers of base units with no other proportionality factor than one * Coherence time, the time over which a propagating wave (especially a laser or maser beam) may be considered coherent; the time interval within which its phase is, on average, predictable Mathematics * Coherence (philosophical gambling strategy), a concept in Bayesian statistics * Coherence (signal processing), a statistic that can be used to examine the relation between two signals or data sets * Coherence (statistics), a property of self-consistency across a set of assessments, or the strength of association between two series * Coherence condition in category theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase-contrast Microscope
__NOTOC__ Phase-contrast microscopy (PCM) is an optical microscopy technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image. Phase shifts themselves are invisible, but become visible when shown as brightness variations. When light waves travel through a medium other than a vacuum, interaction with the medium causes the wave amplitude and phase to change in a manner dependent on properties of the medium. Changes in amplitude (brightness) arise from the scattering and absorption of light, which is often wavelength-dependent and may give rise to colors. Photographic equipment and the human eye are only sensitive to amplitude variations. Without special arrangements, phase changes are therefore invisible. Yet, phase changes often convey important information. Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope, as exemp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hanbury–Brown And Twiss Effect
In physics, the Hanbury Brown and Twiss (HBT) effect is any of a variety of correlation and anti-correlation effects in the intensities received by two detectors from a beam of particles. HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy, although they are also heavily used in the field of quantum optics. History In 1954, Robert Hanbury Brown and Richard Q. Twiss introduced the intensity interferometer concept to radio astronomy for measuring the tiny angular size of stars, suggesting that it might work with visible light as well. Soon after they successfully tested that suggestion: in 1956 they published an in-lab experimental mockup using blue light from a mercury-vapor lamp, and later in the same year, they applied this techniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correlation Interferometry
An intensity interferometer is the name given to devices that use the Hanbury Brown and Twiss effect. In astronomy, the most common use of such an astronomical interferometer is to determine the apparent angular diameter of a radio source or star. If the distance to the object can then be determined by parallax or some other method, the physical diameter of the star can then be inferred. An example of an optical intensity interferometer is the Narrabri Stellar Intensity Interferometer. In quantum optics, some devices which take advantage of correlation and anti-correlation effects in beams of photons might be said to be intensity interferometers, although the term is usually reserved for observatories. An intensity interferometer is built from two light detectors, typically either radio antenna or optical telescopes with photomultiplier tubes (PMTs), separated by some distance, called the baseline. Both detectors are pointed at the same astronomical source, and intensity measu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michelson Stellar Interferometer
The Michelson stellar interferometer is one of the earliest astronomical interferometers built and used. The interferometer was proposed by Albert A. Michelson in 1890, following a suggestion by Hippolyte Fizeau. The first such interferometer built was at the Mount Wilson observatory, making use of its 100-inch (~250 centimeters) mirror. It was used to make the first-ever measurement of a stellar diameter, by Michelson and Francis G. Pease, when the diameter of Betelgeuse was measured in December 1920. The diameter was found to be 240 million miles (~380 million kilometers), about the size of the orbit of Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ..., or about 300 times larger than the Sun. See also * History of astronomical interferometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]