Clifford Algebras
   HOME
*





Clifford Algebras
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford. The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''.see for ex. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by a vector space over a field , where is equipped with a qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Index Theory
Index (or its plural form indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on a Halo megastructure in the ''Halo'' series of video games Periodicals and news portals * ''Index Magazine'', a publication for art and culture * Index.hr, a Croatian online newspaper * index.hu, a Hungarian-language news and community portal * ''The Index'' (Kalamazoo College), a student newspaper * ''The Index'', an 1860s European propaganda journal created by Henry Hotze to support the Confederate States of America * '' Truman State University Index'', a student newspaper Other arts, entertainment and media * The Index (band) * ''Indexed'', a Web cartoon by Jessica Hagy * ''Index'', album by Ana Mena Business enterprises and events * Index (retailer), a former UK catalogue retailer * INDEX, a market research fair in Lucknow, India * Index Cor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Subspace
In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, linear subspaces, flats, and affine subspaces are also called ''linear manifolds'' for emphasizing that there are also manifolds. is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a ''subspace'' when the context serves to distinguish it from other types of subspaces. Definition If ''V'' is a vector space over a field ''K'' and if ''W'' is a subset of ''V'', then ''W'' is a linear subspace of ''V'' if under the operations of ''V'', ''W'' is a vector space over ''K''. Equivalently, a nonempty subset ''W'' is a subspace of ''V'' if, whenever are elements of ''W'' and are elements of ''K'', it follows that is in ''W''. As a corollary, all vector spaces are equipped with at least t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring and a two-sided ideal in , a new ring, the quotient ring , is constructed, whose elements are the cosets of in subject to special and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.) Quotient rings are distinct from the so-called "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization. Formal quotient ring construction Given a ring and a two-sided ideal in , we may define an equivalence relation on as follows: : if and only if is in . Using the ideal properties, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure. ''Note'': In this article, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Algebra
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. Definition For ''R'' a commutative ring, the free (associative, unital) algebra on ''n'' indeterminates is the free ''R''-module with a basis consisting of all words over the alphabet (including the empty word, which is the unit of the free algebra). This ''R''-module becomes an ''R''-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: :\left(X_X_ \cdots X_\right) \cdot \left(X_X_ \cdots X_\right) = X_X_ \cdots X_X_X_ \cdots X_, and the product of two arbitrary ''R''-module elements is thus uniquely determined (because the multiplication in an ''R''-algebra must be ''R''-bilinear). This ''R''- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Diagonalization
In linear algebra, an orthogonal diagonalization of a symmetric matrix is a diagonalization by means of an orthogonal change of coordinates. The following is an orthogonal diagonalization algorithm that diagonalizes a quadratic form ''q''(''x'') on R''n'' by means of an orthogonal change of coordinates ''X'' = ''PY''.Seymour Lipschutz ''3000 Solved Problems in Linear Algebra.'' * Step 1: find the symmetric matrix A which represents q and find its characteristic polynomial \Delta (t). * Step 2: find the eigenvalues of A which are the roots of \Delta (t). * Step 3: for each eigenvalue \lambda of A from step 2, find an orthogonal basis of its eigenspace. * Step 4: normalize all eigenvectors in step 3 which then form an orthonormal basis of R''n''. * Step 5: let P be the matrix whose columns are the normalized eigenvectors in step 4. Then X=PY is the required orthogonal change of coordinates, and the diagonal entries of P^T AP will be the eigenvalues \lambda_ ,\dots ,\lambda_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nondegenerate Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form over . If K=\mathbb R, and the quadratic form takes zero only when all variables are simultaneously zero, then it is a definite quadratic form, otherwise it is an isotropic quadratic form. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry ( Riemannian metric, second fundamental form), differential topology ( intersection forms of four-manifolds), and Lie theory (the Killing form). Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadratic fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Universal Property And Construction
Universal is the adjective for universe. Universal may also refer to: Companies * NBCUniversal, a media and entertainment company ** Universal Animation Studios, an American Animation studio, and a subsidiary of NBCUniversal ** Universal TV, a television channel owned by NBCUniversal ** Universal Kids, an American current television channel, formerly known as Sprout, owned by NBCUniversal ** Universal Pictures, an American film studio, and a subsidiary of NBCUniversal ** Universal Television, a television division owned by NBCUniversal Content Studios ** Universal Parks & Resorts, the theme park unit of NBCUniversal * Universal Airlines (other) * Universal Avionics, a manufacturer of flight control components * Universal Corporation, an American tobacco company * Universal Display Corporation, a manufacturer of displays * Universal Edition, a classical music publishing firm, founded in Vienna in 1901 * Universal Entertainment Corporation, a Japanese software producer and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]