Cantor's Theorem
In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with n elements has a total of 2^n subsets, and the theorem holds because 2^n > n for all nonnegative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for German mathematician Georg Cantor, who first stated and proved it at the end of the 19th century. Cantor's theorem had immediate and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hasse Diagram Of Powerset Of 3
Hasse is both a surname and a given name. Notable people with the name include: Surname: * Clara H. Hasse (1880–1926), American botanist * Helmut Hasse (1898–1979), German mathematician * Henry Hasse (1913–1977), US writer of science fiction * Johann Adolph Hasse (1699–1783), German composer * Maria Hasse (1921–2014), German mathematician * Peter Hasse (c. 1585–1640), German organist and composer Given name or nickname: * Hans Alfredson (born 1931), Swedish actor, film director, writer and comedian * Hans Backe (born 1952), Swedish football manager * Hasse Borg (born 1953), Swedish footballer * Hasse Börjes (born 1948), Swedish speed skater * Hasse Ekman (19152004), Swedish film director and actor * Hans Wind Hans Henrik "Hasse" Wind (30 July 1919, Ekenäs – 24 July 1995, Tampere) was a Finnish fighter pilot and flying ace in World War II, with 75 confirmed air combat victories. He is one of the four double recipients of the Mannerheim Cross 2n ... (1919–1 ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cardinal Number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The '' transfinite'' cardinal numbers, often denoted using the Hebrew symbol \aleph ( aleph) followed by a subscript, describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a onetoone correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Automated Theorem Prover
Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science. Logical foundations While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics. Frege's ''Begriffsschrift'' (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic. His ''Foundations of Arithmetic'', published 1884, expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential '' Principia Mathematica'', first published 1910–1913, and with a revised second edition in 1927. Russell and Whitehead thought they could derive all mathematical truth using axioms and infere ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logical Negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false, and a value of ''false'' when its operand is true. Thus if statement is true, then \neg P ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . Not ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Total Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and nonstrict total orders A on a set X is a strict partia ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Surjective Function
In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of its domain. It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms ''injective'' and ''bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20thcentury mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surjective function has a right inverse assuming the axiom ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Reductio Ad Absurdum
In logic, (Latin for "reduction to absurdity"), also known as (Latin for "argument to absurdity") or ''apagogical arguments'', is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction. This argument form traces back to Ancient Greek philosophy and has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate. Examples The "absurd" conclusion of a ''reductio ad absurdum'' argument can take a range of forms, as these examples show: * The Earth cannot be flat; otherwise, since Earth assumed to be finite in extent, we would find people falling off the edge. * There is no smallest positive rational number because, if there were, then it could be divided by two to get a smaller one. The first example argues that denial of the premise would result in a ridiculous conclusion, against the evidence of our senses. The second example is a mathematical proof ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Contradiction
In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect." In modern formal logic and type theory, the term is mainly used instead for a ''single'' proposition, often denoted by the falsum symbol \bot; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a selfcontradictory proposition). This can be generalized to a collection of propositions, which is then said to "contain" a contradiction. History By creation of a paradox, Plato's '' Euthydemus'' dialogue demonstrates the need for the notion of ''contradiction''. In the ensuing ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Image (mathematics)
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Springer Science & Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, ebooks and peerreviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded SpringerVerlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cantor's Diagonal Argument
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the antidiagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into onetoone correspondence with the infinite set of natural numbers. English translation: Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began. The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, which appeared in 1874. However, it demonstrates a general technique that has since been used in a wide range of proofs, including the first of Gödel's incompleteness theorems and Turing's answer to the '' Entscheidungsproblem''. Diagonalization arguments are often also the source of contradictions like Russell's paradox and Richard's paradox ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 